Bone HK and Welham MJ (MAY 2007)
Journal of cell science 120 Pt 10 1752--62
Phosphoinositide 3-kinase signalling regulates early development and developmental haemopoiesis.
Phosphoinositide 3-kinase (PI3K)-dependent signalling regulates a wide variety of cellular functions including proliferation and differentiation. Disruption of class I(A) PI3K isoforms has implicated PI3K-mediated signalling in development of the early embryo and lymphohaemopoietic system. We have used embryonic stem (ES) cells as an in vitro model to study the involvement of PI3K-dependent signalling during early development and haemopoiesis. Both pharmacological inhibition and genetic manipulation of PI3K-dependent signalling demonstrate that PI3K-mediated signals,most likely via 3-phosphoinositide-dependent protein kinase 1 (PDK1),are required for proliferation of cells within developing embryoid bodies (EBs). Surprisingly,the haemopoietic potential of EB-derived cells was not blocked upon PI3K inhibition but rather enhanced,correlating with modest increases in expression of haemopoietic marker genes. By contrast,PDK1-deficient EB-derived progeny failed to generate terminally differentiated haemopoietic lineages. This deficiency appeared to be due to a requirement for PI3K signalling during the proliferative phase of blast-colony-forming cell (BL-CFC) expansion,rather than as a result of effects on differentiation per se. We also demonstrate that PI3K-dependent signalling is required for optimal generation of erythroid and myeloid progenitors and their differentiation into mature haemopoietic colony types. These data demonstrate that PI3K-dependent signals play important roles at different stages of haemopoietic development.
View Publication
文献
Eckardt S et al. (FEB 2007)
Genes & development 21 4 409--19
Hematopoietic reconstitution with androgenetic and gynogenetic stem cells.
Parthenogenetic embryonic stem (ES) cells with two oocyte-derived genomes (uniparental) have been proposed as a source of autologous tissue for transplantation. The therapeutic applicability of any uniparental cell type is uncertain due to the consequences of genomic imprinting that in mammalian uniparental tissues causes unbalanced expression of imprinted genes. We transplanted uniparental fetal liver cells into lethally irradiated adult mice to test their capacity to replace adult hematopoietic tissue. Both maternal (gynogenetic) and paternal (androgenetic) derived cells conveyed long-term,multilineage reconstitution of hematopoiesis in recipients,with no associated pathologies. We also establish that uniparental ES cells can differentiate into transplantable hematopoietic progenitors in vitro that contribute to long-term hematopoiesis in recipients. Hematopoietic tissue in recipients maintained fidelity of parent-of-origin methylation marks at the Igf2/H19 locus; however,variability occurred in the maintenance of parental-specific methylation marks at other loci. In summary,despite genomic imprinting and its consequences on development that are particularly evident in the androgenetic phenotype,uniparental cells of both parental origins can form adult-transplantable stem cells and can repopulate an adult organ.
View Publication
文献
Xu C (JAN 2006)
Methods in enzymology 420 18--37
Characterization and evaluation of human embryonic stem cells.
Human embryonic stem cells (hESCs) provide great opportunities for regenerative medicine,pharmacological and toxicological investigation,and the study of human embryonic development. These applications require proper derivation,maintenance,and extensive characterization of undifferentiated cells before being used for differentiation into cells of interest. Undifferentiated hESCs possess several unique features,including their extensive proliferation capacity in the undifferentiated state,ability to maintain a normal karyotype after long-term culture,expression of markers characteristic of stem cells,high constitutive telomerase activity,and capacity to differentiate into essentially all somatic cell types. This chapter will summarize the current development in culture conditions and provide technical details for the evaluation and characterization of hESCs.
View Publication
文献
Akutsu H et al. (JAN 2006)
Methods in enzymology 418 78--92
Human embryonic stem cells.
Human embryonic stem cells hold great promise in furthering our treatment of disease and increasing our understanding of early development. This chapter describes protocols for the derivation and maintenance of human embryonic stem cells. In addition,it summarizes briefly several alternative methods for the culture of human embryonic stem cells. Thus,this chapter provides a good starting point for researchers interested in harnessing the potential of human embryonic stem cells.
View Publication
Meta-analysis of differentiating mouse embryonic stem cell gene expression kinetics reveals early change of a small gene set.
Stem cell differentiation involves critical changes in gene expression. Identification of these should provide endpoints useful for optimizing stem cell propagation as well as potential clues about mechanisms governing stem cell maintenance. Here we describe the results of a new meta-analysis methodology applied to multiple gene expression datasets from three mouse embryonic stem cell (ESC) lines obtained at specific time points during the course of their differentiation into various lineages. We developed methods to identify genes with expression changes that correlated with the altered frequency of functionally defined,undifferentiated ESC in culture. In each dataset,we computed a novel statistical confidence measure for every gene which captured the certainty that a particular gene exhibited an expression pattern of interest within that dataset. This permitted a joint analysis of the datasets,despite the different experimental designs. Using a ranking scheme that favored genes exhibiting patterns of interest,we focused on the top 88 genes whose expression was consistently changed when ESC were induced to differentiate. Seven of these (103728at,8430410A17Rik,Klf2,Nr0b1,Sox2,Tcl1,and Zfp42) showed a rapid decrease in expression concurrent with a decrease in frequency of undifferentiated cells and remained predictive when evaluated in additional maintenance and differentiating protocols. Through a novel meta-analysis,this study identifies a small set of genes whose expression is useful for identifying changes in stem cell frequencies in cultures of mouse ESC. The methods and findings have broader applicability to understanding the regulation of self-renewal of other stem cell types.
View Publication
文献
Kriz V et al. (NOV 2006)
The Journal of biological chemistry 281 45 34484--91
The SHB adapter protein is required for normal maturation of mesoderm during in vitro differentiation of embryonic stem cells.
Definitive mesoderm arises from a bipotent mesendodermal population,and to study processes controlling its development at this stage,embryonic stem (ES) cells can be employed. SHB (Src homology 2 protein in beta-cells) is an adapter protein previously found to be involved in ES cell differentiation to mesoderm. To further study the role of SHB in this context,we have established ES cell lines deficient for one (SHB+/-) or both SHB alleles (SHB-/-). Differentiating embryoid bodies (EBs) derived from these ES cell lines were used for gene expression analysis. Alternatively,EBs were stained for the blood vessel marker CD31. For hematopoietic differentiation,EBs were differentiated in methylcellulose. SHB-/- EBs exhibited delayed down-regulation of the early mesodermal marker Brachyury. Later mesodermal markers relatively specific for the hematopoietic,vascular,and cardiac lineages were expressed at lower levels on day 6 or 8 of differentiation in EBs lacking SHB. The expression of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 was also reduced in SHB-/- EBs. SHB-/- EBs demonstrated impaired blood vessel formation after vascular endothelial growth factor stimulation. In addition,the SHB-/- ES cells formed fewer blood cell colonies than SHB+/+ ES cells. It is concluded that SHB is required for appropriate hematopoietic and vascular differentiation and that delayed down-regulation of Brachyury expression may play a role in this context.
View Publication
文献
T. E. Ludwig et al. (aug 2006)
Nature methods 3 8 637--46
Feeder-independent culture of human embryonic stem cells.
Feeder-independent culture of human embryonic stem cells.
View Publication
文献
Vodyanik MA et al. (SEP 2006)
Blood 108 6 2095--105
Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures.
During hematopoietic differentiation of human embryonic stem cells (hESCs),early hematopoietic progenitors arise along with endothelial cells within the CD34(+) population. Although hESC-derived hematopoietic progenitors have been previously identified by functional assays,their phenotype has not been defined. Here,using hESC differentiation in coculture with OP9 stromal cells,we demonstrate that early progenitors committed to hematopoietic development could be identified by surface expression of leukosialin (CD43). CD43 was detected on all types of emerging clonogenic progenitors before expression of CD45,persisted on differentiating hematopoietic cells,and reliably separated the hematopoietic CD34(+) population from CD34(+)CD43(-)CD31(+)KDR(+) endothelial and CD34(+)CD43(-)CD31(-)KDR(-) mesenchymal cells. Furthermore,we demonstrated that the first-appearing CD34(+)CD43(+)CD235a(+)CD41a(+/-)CD45(-) cells represent precommitted erythro-megakaryocytic progenitors. Multipotent lymphohematopoietic progenitors were generated later as CD34(+)CD43(+)CD41a(-)CD235a(-)CD45(-) cells. These cells were negative for lineage-specific markers (Lin(-)),expressed KDR,VE-cadherin,and CD105 endothelial proteins,and expressed GATA-2,GATA-3,RUNX1,C-MYB transcription factors that typify initial stages of definitive hematopoiesis originating from endothelial-like precursors. Acquisition of CD45 expression by CD34(+)CD43(+)CD45(-)Lin(-) cells was associated with progressive myeloid commitment and a decrease of B-lymphoid potential. CD34(+)CD43(+)CD45(+)Lin(-) cells were largely devoid of VE-cadherin and KDR expression and had a distinct FLT3(high)GATA3(low)RUNX1(low)PU1(high)MPO(high)IL7RA(high) gene expression profile.
View Publication
文献
Kurita R et al. (SEP 2006)
Stem cells (Dayton,Ohio) 24 9 2014--22
Tal1/Scl gene transduction using a lentiviral vector stimulates highly efficient hematopoietic cell differentiation from common marmoset (Callithrix jacchus) embryonic stem cells.
The development of embryonic stem cell (ESC) therapies requires the establishment of efficient methods to differentiate ESCs into specific cell lineages. Here,we report the in vitro differentiation of common marmoset (CM) (Callithrix jacchus) ESCs into hematopoietic cells after exogenous gene transfer using vesicular stomatitis virus-glycoprotein-pseudotyped lentiviral vectors. We transduced hematopoietic genes,including tal1/scl,gata1,gata2,hoxB4,and lhx2,into CM ESCs. By immunochemical and morphological analyses,we demonstrated that overexpression of tal1/scl,but not the remaining genes,dramatically increased hematopoiesis of CM ESCs,resulting in multiple blood-cell lineages. Furthermore,flow cytometric analysis demonstrated that CD34,a hematopoietic stem/progenitor cell marker,was highly expressed in tal1/scl-overexpressing embryoid body cells. Similar results were obtained from three independent CM ESC lines. These results suggest that transduction of exogenous tal1/scl cDNA into ESCs is a promising method to induce the efficient differentiation of CM ESCs into hematopoietic stem/progenitor cells.
View Publication
文献
Slukvin II et al. (MAR 2006)
Journal of immunology (Baltimore,Md. : 1950) 176 5 2924--32
Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway.
We have established a system for directed differentiation of human embryonic stem (hES) cells into myeloid dendritic cells (DCs). As a first step,we induced hemopoietic differentiation by coculture of hES cells with OP9 stromal cells,and then,expanded myeloid cells with GM-CSF using a feeder-free culture system. Myeloid cells had a CD4+CD11b+CD11c+CD16+CD123(low)HLA-DR- phenotype,expressed myeloperoxidase,and included a population of M-CSFR+ monocyte-lineage committed cells. Further culture of myeloid cells in serum-free medium with GM-CSF and IL-4 generated cells that had typical dendritic morphology; expressed high levels of MHC class I and II molecules,CD1a,CD11c,CD80,CD86,DC-SIGN,and CD40; and were capable of Ag processing,triggering naive T cells in MLR,and presenting Ags to specific T cell clones through the MHC class I pathway. Incubation of DCs with A23187 calcium ionophore for 48 h induced an expression of mature DC markers CD83 and fascin. The combination of GM-CSF with IL-4 provided the best conditions for DC differentiation. DCs obtained with GM-CSF and TNF-alpha coexpressed a high level of CD14,and had low stimulatory capacity in MLR. These data clearly demonstrate that hES cells can be used as a novel and unique source of hemopoietic and DC precursors as well as DCs at different stages of maturation to address essential questions of DC development and biology. In addition,because ES cells can be expanded without limit,they can be seen as a potential scalable source of cells for DC vaccines or DC-mediated induction of immune tolerance.
View Publication
文献
T. E. Ludwig et al. (feb 2006)
Nature biotechnology 24 2 185--7
Derivation of human embryonic stem cells in defined conditions.
We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells,but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.
View Publication
文献
Wagner W et al. (NOV 2005)
Experimental hematology 33 11 1402--16
Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood.
OBJECTIVE: Various preparative protocols have been proposed for the acquisition and cultivation of mesenchymal stem cells (MSC). Whereas surface antigen markers have failed to precisely define this population,microarray analysis might provide a better tool for characterization of MSC. METHODS: In this study,we have analyzed global gene expression profiles of human MSC isolated from adipose tissue (AT),from umbilical cord blood (CB),and from bone marrow (BM) under two growth conditions and have compared them to terminally differentiated human fibroblasts (HS68). Profiles were compared using our Human Genome Microarray representing 51.144 different cDNA clones. RESULTS: Cultured with the appropriate conditions,osteogenic and adipogenic differentiation could be confirmed in all MSC preparations but not in fibroblasts. No phenotypic differences were observed by flow cytometry using a panel of 22 surface antigen markers. Whereas MSC derived from different donors using the same culture procedure yielded a consistent and reproducible gene expression profile,many genes were differentially expressed in MSC from different ontogenetic sources or from different culture conditions. Twenty-five genes were overlapping and upregulated in all MSC preparations from AT,CB,and BM as compared to HS68 fibroblasts. These genes included fibronectin,ECM2,glypican-4,ID1,NF1B,HOXA5,and HOXB6. Many genes upregulated in MSC are involved in extracellular matrix,morphogenesis,and development,whereas several inhibitors of the Wnt pathway (DKK1,DKK3,SFRP1) were highly expressed in fibroblasts. CONCLUSION: Our results have provided a foundation for a more reproducible and reliable quality control using genotypic analysis for defining MSC.
View Publication