Moore JC et al. (MAR 2010)
Stem Cell Research 4 2 92--106
A high-resolution molecular-based panel of assays for identification and characterization of human embryonic stem cell lines
Meticulous characterization of human embryonic stem cells (hESC) is critical to their eventual use in cell-based therapies,particularly in view of the diverse methods for derivation and maintenance of these cell lines. However,characterization methods are generally not standardized and many currently used assays are subjective,making dependable and direct comparison of cell lines difficult. In order to address this problem,we selected 10 molecular-based high-resolution assays as components of a panel for characterization of hESC. The selection of the assays was primarily based on their quantitative or objective (rather than subjective) nature. We demonstrate the efficacy of this panel by characterizing 4 hESC lines,derived in two different laboratories using different derivation techniques,as pathogen free,genetically stable,and able to differentiate into derivatives of all three germ layers. Our panel expands and refines a characterization panel previously proposed by the International Stem Cell Initiative and is another step toward standardized hESC characterization and quality control,a crucial element of successful hESC research and clinical translation.
View Publication
Fernandes AM et al. (JAN 2010)
Cell Transplantation 19 5 509--23
Worldwide survey of published procedures to culture human embryonic stem cells
Since their derivation 11 years ago,human embryonic stem (hES) cells have become a powerful tool in both basic biomedical research and developmental biology. Their capacity for self-renewal and differentiation into any tissue type has also brought interest from fields such as cell therapy and drug screening. We conducted an extensive analysis of 750 papers (51% of the total published about hES cells between 1998 and 2008) to present a spectrum of hES cell research including culture protocols developed worldwide. This review may stimulate discussions about the importance of having unvarying methods to culture hES cells,in order to facilitate comparisons among data obtained by research groups elsewhere,especially concerning preclinical studies. Moreover,the description of the most widely used cell lines,reagents,and procedures adopted internationally will help newcomers on deciding the best strategies for starting their own studies. Finally,the results will contribute with the efforts of stem cell researchers on comparing the performance of different aspects related to hES cell culture methods.
View Publication
Li Z et al. (JAN 2009)
PLoS ONE 4 12 e8443
Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction
BACKGROUND: Differentiation of human embryonic stem cells into endothelial cells (hESC-ECs) has the potential to provide an unlimited source of cells for novel transplantation therapies of ischemic diseases by supporting angiogenesis and vasculogenesis. However,the endothelial differentiation efficiency of the conventional embryoid body (EB) method is low while the 2-dimensional method of co-culturing with mouse embryonic fibroblasts (MEFs) require animal product,both of which can limit the future clinical application of hESC-ECs. Moreover,to fully understand the beneficial effects of stem cell therapy,investigators must be able to track the functional biology and physiology of transplanted cells in living subjects over time. METHODOLOGY: In this study,we developed an extracellular matrix (ECM) culture system for increasing endothelial differentiation and free from contaminating animal cells. We investigated the transcriptional changes that occur during endothelial differentiation of hESCs using whole genome microarray,and compared to human umbilical vein endothelial cells (HUVECs). We also showed functional vascular formation by hESC-ECs in a mouse dorsal window model. Moreover,our study is the first so far to transplant hESC-ECs in a myocardial infarction model and monitor cell fate using molecular imaging methods. CONCLUSION: Taken together,we report a more efficient method for derivation of hESC-ECs that express appropriate patterns of endothelial genes,form functional vessels in vivo,and improve cardiac function. These studies suggest that hESC-ECs may provide a novel therapy for ischemic heart disease in the future.
View Publication
Esteban MA et al. (JAN 2010)
Cell stem cell 6 1 71--9
Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. However,the low efficiency and slow kinetics of the reprogramming process have hampered progress with this technology. Here we report that a natural compound,vitamin C (Vc),enhances iPSC generation from both mouse and human somatic cells. Vc acts at least in part by alleviating cell senescence,a recently identified roadblock for reprogramming. In addition,Vc accelerates gene expression changes and promotes the transition of pre-iPSC colonies to a fully reprogrammed state. Our results therefore highlight a straightforward method for improving the speed and efficiency of iPSC generation and provide additional insights into the mechanistic basis of the reprogramming process.
View Publication
Miyoshi N et al. (JAN 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 1 40--5
Defined factors induce reprogramming of gastrointestinal cancer cells.
Although cancer is a disease with genetic and epigenetic origins,the possible effects of reprogramming by defined factors remain to be fully understood. We studied the effects of the induction or inhibition of cancer-related genes and immature status-related genes whose alterations have been reported in gastrointestinal cancer cells. Retroviral-mediated introduction of induced pluripotent stem (iPS) cell genes was necessary for inducing the expression of immature status-related proteins,including Nanog,Ssea4,Tra-1-60,and Tra-1-80 in esophageal,stomach,colorectal,liver,pancreatic,and cholangiocellular cancer cells. Induced cells,but not parental cells,possessed the potential to express morphological patterns of ectoderm,mesoderm,and endoderm,which was supported by epigenetic studies,indicating methylation of DNA strands and the histone H3 protein at lysine 4 in promoter regions of pluripotency-associated genes such as NANOG. In in vitro analysis induced cells showed slow proliferation and were sensitized to differentiation-inducing treatment,and in vivo tumorigenesis was reduced in NOD/SCID mice. This study demonstrated that pluripotency was manifested in induced cells,and that the induced pluripotent cancer (iPC) cells were distinct from natural cancer cells with regard to their sensitivity to differentiation-inducing treatment. Retroviral-mediated introduction of iPC cells confers higher sensitivity to chemotherapeutic agents and differentiation-inducing treatment.
View Publication
Xu X et al. ( 2010)
Biotechnology progress 26 3 781--8
Enhancement of cell recovery for dissociated human embryonic stem cells after cryopreservation.
Due to widespread applications of human embryonic stem (hES) cells,it is essential to establish effective protocols for cryopreservation and subsequent culture of hES cells to improve cell recovery. We have developed a new protocol for cryopreservation of dissociated hES cells and subsequent culture. We examined the effects of new formula of freezing solution containing 7.5% dimethylsulfoxide (DMSO) (v/v %) and 2.5% polyethylene glycol (PEG) (w/v %) on cell survival and recovery of hES cells after cryopreservation,and further investigated the role of the combination of Rho-associated kinase (ROCK) inhibitor and p53 inhibitor on cell recovery during the subsequent culture. Compared with the conventional slow-freezing method which uses 10% DMSO as a freezing solution and then cultured in the presence of ROCK inhibitor at the first day of culture,we found out that hES cell recovery was significantly enhanced by around 30 % (P textless 0.05) by the new freezing solution. Moreover,at the first day of post-thaw culture,the presence of 10 microM ROCK inhibitor (Y-27632) and 1 microM pifithrin-mu together further significantly improved cell recovery by around 20% (P textless 0.05) either for feeder-dependent or feeder-independent culture. hES cells remained their undifferentiated status after using this novel protocol for cryopreservation and subsequent culture. Furthermore,this protocol is a scalable cryopreservation method for handling large quantities of hES cells.
View Publication
Martins-Taylor K and Xu R-H (JAN 2010)
Journal of cellular biochemistry 109 1 16--25
Determinants of pluripotency: from avian, rodents, to primates.
Since mouse embryonic stem (ES) cells was first derived in 1981,the ability of this unprecedented cell type to self-renew and differentiate without limit has revolutionized the discovery tools that are used to study gene functions and development. Furthermore,they have inspired others to hunt for similar cells from other species. The derivation of human ES cells in 1998 has accelerated these discoveries and has also widely provoked public interest,due to both the scientific significance of these cells for human tissue regeneration and the ethical disputes over the use of donated early human embryos. However,this is no longer a barrier,with the recent discovery of methods that can convert differentiated somatic cells into ES-like cells or induced pluripotent stem (iPS) cells,by using defined reprogramming factors. This review attempts to summarize the progresses in the derivation of ES cells (as well as other embryo-derived pluripotent cells) and iPS cells from various species. We will focus on the molecular and biological features of the cells,as well as the different determinants identified thus far to sustain their pluripotency.
View Publication
Fu X et al. (AUG 2010)
Tissue engineering. Part C,Methods 16 4 719--733
Autologous feeder cells from embryoid body outgrowth support the long-term growth of human embryonic stem cells more effectively than those from direct differentiation.
Autologous feeder cells have been developed by various methods to minimize the presence of xenogenic entities in human embryonic stem cell (hESC) cultures. However,there was no systematic comparison of supportive effects of the feeder cells on hESC growth,nor comparison to the supportive effects of various feeder-free culture systems and standard mouse feeder cells. In this study,we aimed to compare the supportive abilities of autologous feeders derived either directly from H9 hESCs (H9 dF) or from outgrowth of embryoid body predifferentiated in suspension from H9 hESCs (H9 ebF). Mouse feeder system and matrigel-mTeSR1 feeder-free system were used as controls. H9 ebF was found to secrete more basic fibroblast growth factor in the conditioned medium than H9 dF did. The undifferentiated state of H9 hESCs was sustained more stably on H9 ebF than on H9 dF,and the differentiation potential of H9 hESCs on H9 ebF was higher than on H9 dF. We concluded that H9 ebF was an optimal autologous feeder to maintain the long-term undifferentiated state of hESCs in our current culture system. This study helps to standardize the autologous culture of hESCs. It also suggests a more definite direction for future development of xeno-free culture system for hESCs.
View Publication
Meng G et al. (APR 2009)
Stem cells and development 19 4 1--31
Extra-cellular Matrix Isolated from Foreskin Fibroblasts Supports Long Term Xeno-Free Human Embryonic Stem Cell Culture.
Human embryonic stem (hES) cells hold great promise for application of human cell and tissue replacement therapy. However,the overwhelming majority of currently available hES cell lines have been directly or indirectly exposed to materials containing animal-derived components during their derivation,propagation,and cryopreservation. Unlike feeder based cultures,which require the simultaneous growth of feeder and stem cells,resulting in mixed cell populations,stem cells grown on feeder-free systems are easily separated from the surface,presenting a pure population of cells for downstream applications. In this study we have developed a novel method to expand hES cells in xeno-free,feeder-free conditions using two different matrices derived from xeno-free human foreskin fibroblasts (XF-HFFs). Using XF-HFF-derived extracellular matrix,together with 100ng/ml recombinant bFGF supplemented HEScGRO Basal Medium,long term xeno-free expansion of hES cells is possible. Resulting hES cells were subjected to stringent tests and were found to maintain ES cell features,including morphology,pluripotency,stable karyotype,and expression of cell surface markers,for at least 20 passages. Xeno-free culturing practices are essential for the translation of basic hES cell research into the clinic. Therefore,the method presented in this study demonstrates that hES cells can be cultured in complete xeno-free conditions without the loss of pluripotency and furthermore,without the possibility of contamination from exogenous sources.
View Publication
Lister R et al. (NOV 2009)
Nature 462 7271 315--22
Human DNA methylomes at base resolution show widespread epigenomic differences.
DNA cytosine methylation is a central epigenetic modification that has essential roles in cellular processes including genome regulation,development and disease. Here we present the first genome-wide,single-base-resolution maps of methylated cytosines in a mammalian genome,from both human embryonic stem cells and fetal fibroblasts,along with comparative analysis of messenger RNA and small RNA components of the transcriptome,several histone modifications,and sites of DNA-protein interaction for several key regulatory factors. Widespread differences were identified in the composition and patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic stem cells was in a non-CG context,suggesting that embryonic stem cells may use different methylation mechanisms to affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells,and was restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes involved in pluripotency and differentiation,and widespread reduced methylation levels in fibroblasts associated with lower transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic modification in human disease and development.
View Publication
Wang X et al. (DEC 2009)
Journal of Biological Chemistry 284 49 34054--34064
Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells
Apoptosis and proliferation are two dynamically and tightly regulated processes that together maintain the homeostasis of renewable tissues. Anoikis is a subtype of apoptosis induced by detachment of adherent cells from the extracellular matrix. By using the defined mTeSR1 medium and collecting freshly detached cells,we found here that human pluripotent stem (PS) cells including embryonic stem (ES) cells and induced pluripotent stem cells are subject to constant anoikis in culture,which is escalated in the absence of basic fibroblast growth factor (bFGF). Withdrawal of bFGF also promotes apoptosis and differentiation of the remaining adherent cells without affecting their cell cycle progression. Insulin-like growth factor 2 (IGF2) has previously been reported to act downstream of FGF signaling to support self-renewal of human ES cells. However,we found that IGF2 cannot substitute bFGF in the TeSR1-supported culture,although endogenous IGF signaling is required to sustain self-renewal of human ES cells. On the other hand,all of the bFGF withdrawal effects observed here can be markedly prevented by the caspase inhibitor z-VAD-FMK. We further demonstrated that the bFGF-repressed anoikis is dependent on activation of ERK and AKT and associated with inhibition of Bcl-2-interacting mediator of cell death and the caspase-ROCK1-myosin signaling. Anoikis is independent of pre-detachment apoptosis and differentiation of the cells. Because previous studies of human PS cells have been focused on attached cells,our findings revealed a neglected role of bFGF in sustaining self-renewal of human PS cells: preventing them from anoikis via inhibition of caspase activation.
View Publication
Rowland TJ et al. (AUG 2010)
Stem cells and development 19 8 1231--1240
Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin.
Human induced pluripotent stem cells (iPSCs) hold promise as a source of adult-derived,patient-specific pluripotent cells for use in cell-based regenerative therapies. However,current methods of cell culture are tedious and expensive,and the mechanisms underlying cell proliferation are not understood. In this study,we investigated expression and function of iPSC integrin extracellular matrix receptors to better understand the molecular mechanisms of cell adhesion,survival,and proliferation. We show that iPSC lines generated using Oct-3/4,Sox-2,Nanog,and Lin-28 express a repertoire of integrins similar to that of hESCs,with prominent expression of subunits alpha5,alpha6,alphav,beta1,and beta5. Integrin function was investigated in iPSCs cultured without feeder layers on Matrigel or vitronectin,in comparison to human embryonic stem cells. beta1 integrins were required for adhesion and proliferation on Matrigel,as shown by immunological blockade experiments. On vitronectin,the integrin alphavbeta5 was required for initial attachment,but inhibition of both alphavbeta5 and beta1 was required to significantly decrease iPSC proliferation. Furthermore,iPSCs cultured on vitronectin for 9 passages retained normal karyotype,pluripotency marker expression,and capacity to differentiate in vitro. These studies suggest that vitronectin,or derivatives thereof,might substitute for Matrigel in a more defined system for iPSC culture.
View Publication