L. Yao et al. (oct 2022)
Cancer research communications 2 10 1255--1265
Comprehensive Characterization of the Multiple Myeloma Immune Microenvironment Using Integrated scRNA-seq, CyTOF, and CITE-seq Analysis.
UNLABELLED As part of the Multiple Myeloma Research Foundation (MMRF) immune atlas pilot project,we compared immune cells of multiple myeloma bone marrow samples from 18 patients assessed by single-cell RNA sequencing (scRNA-seq),mass cytometry (CyTOF),and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to understand the concordance of measurements among single-cell techniques. Cell type abundances are relatively consistent across the three approaches,while variations are observed in T cells,macrophages,and monocytes. Concordance and correlation analysis of cell type marker gene expression across different modalities highlighted the importance of choosing cell type marker genes best suited to particular modalities. By integrating data from these three assays,we found International Staging System stage 3 patients exhibited decreased CD4+ T/CD8+ T cells ratio. Moreover,we observed upregulation of RAC2 and PSMB9,in natural killer cells of fast progressors compared with those of nonprogressors,as revealed by both scRNA-seq and CITE-seq RNA measurement. This detailed examination of the immune microenvironment in multiple myeloma using multiple single-cell technologies revealed markers associated with multiple myeloma rapid progression which will be further characterized by the full-scale immune atlas project. SIGNIFICANCE scRNA-seq,CyTOF,and CITE-seq are increasingly used for evaluating cellular heterogeneity. Understanding their concordances is of great interest. To date,this study is the most comprehensive examination of the measurement of the immune microenvironment in multiple myeloma using the three techniques. Moreover,we identified markers predicted to be significantly associated with multiple myeloma rapid progression.
View Publication
文献
A. M. Metelo et al. (mar 2022)
Cancer research communications 2 3 158--171
Allogeneic Anti-BCMA CAR T Cells Are Superior to Multiple Myeloma-derived CAR T Cells in Preclinical Studies and May Be Combined with Gamma Secretase Inhibitors.
UNLABELLED Multiple myeloma remains an incurable plasma cell malignancy despite the rapidly evolving treatment landscape. Chimeric antigen receptor T cells targeted against BCMA have recently shown great promise in relapsed refractory multiple myeloma; however,all patients ultimately still progress from their disease. Lack of CAR T-cell persistence,impaired T-cell fitness in autologous CAR T-cell products and the presence of an immunosuppressive bone marrow (BM) microenvironment are contributory factors to treatment failure. We generated anti-BCMA CAR T cells from healthy donors (HD) and patients with multiple myeloma at different stages of disease to compare their T-cell profile,fitness,and cytotoxic activity in preclinical studies. We also used an ex vivo assay with multiple myeloma BM biopsies from distinct genomic subgroups to test the efficacy of HD-derived CAR T cells in a clinically relevant model. HD volunteers showed increased T-cell counts,higher CD4/CD8 ratio,and expanded na{\{i}}ve T-cell population compared with patients with multiple myeloma. After anti-BCMA CAR T-cell production patients with relapsed multiple myeloma had lower frequencies of CAR+ T cells decreased central memory phenotype and increased checkpoint inhibitory markers compared with HD-derived products which compromised their expansion and cytotoxicity against multiple myeloma cells in vitro. Importantly HD-derived CAR T cells efficiently killed primary multiple myeloma cells within the BM microenvironment of different multiple myeloma genomic subgroups and their cytotoxic activity could be boosted with gamma secretase inhibitors. In conclusion allogeneic anti-BCMA CAR T cells are a potential therapeutic strategy for patients with relapsed multiple myeloma and should be further developed in the clinic. SIGNIFICANCE Multiple myeloma is an incurable cancer of the plasma cells. A new therapy with anti-BCMA CAR T cells - the patient's own T cells genetically engineered to find and kill myeloma cancer cells - has shown encouraging results. Unfortunately patients still relapse. In this study we propose to use T cells from HD volunteers which have a stronger T-cell fitness higher cancer killing capacity and are ready to be administered when needed."
View Publication
文献
T. V. Zhao et al. (jul 2022)
Nature cardiovascular research 1 7 634--648
Hyperactivity of the CD155 immune checkpoint suppresses anti-viral immunity in patients with coronary artery disease.
Pre-existent cardiovascular disease is a risk factor for weak anti-viral immunity,but underlying mechanisms remain undefined. Here,we report that patients with coronary artery disease (CAD) have macrophages (M??) that actively suppress the induction of helper T cells reactive to two viral antigens: the SARS-CoV2 Spike protein and the Epstein-Barr virus (EBV) glycoprotein 350. CAD M?? overexpressed the methyltransferase METTL3,promoting the accumulation of N�?-methyladenosine (m6A) in Poliovirus receptor (CD155) mRNA. m6A modifications of positions 1635 and 3103 in the 3'UTR of CD155 mRNA stabilized the transcript and enhanced CD155 surface expression. As a result,the patients' M?? abundantly expressed the immunoinhibitory ligand CD155 and delivered negative signals to CD4+ T cells expressing CD96 and/or TIGIT receptors. Compromised antigen-presenting function of METTL3hi CD155hi M?? diminished anti-viral T cell responses in vitro and in vivo. LDL and its oxidized form induced the immunosuppressive M?? phenotype. Undifferentiated CAD monocytes had hypermethylated CD155 mRNA,implicating post-transcriptional RNA modifications in the bone-marrow in shaping anti-viral immunity in CAD.
View Publication
文献
F. Qian et al. (jan 2023)
Journal of visualized experiments : JoVE 191
Intra-Peritoneal Transplantation for Generating Acute Myeloid Leukemia in Mice.
There is an unmet need for novel therapies to treat acute myeloid leukemia (AML) and the associated relapse that involves persistent leukemia stem cells (LSCs). An experimental AML rodent model to test therapies based on successfully transplanting these cells via retro-orbital injections in recipient mice is fraught with challenges. The aim of this study was to develop an easy,reliable,and consistent method to generate a robust murine model of AML using an intra-peritoneal route. In the present protocol,bone marrow cells were transduced with a retrovirus expressing human MLL-AF9 fusion oncoprotein. The efficiency of lineage negative (Lin-) and Lin-Sca-1+c-Kit+ (LSK) populations as donor LSCs in the development of primary AML was tested,and intra-peritoneal injection was adopted as a new method to generate AML. Comparison between intra-peritoneal and retro-orbital injections was done in serial transplantations to compare and contrast the two methods. Both Lin- and LSK cells transduced with human MLL-AF9 virus engrafted well in the bone marrow and spleen of recipients,leading to a full-blown AML. The intra-peritoneal injection of donor cells established AML in recipients upon serial transplantation,and the infiltration of AML cells was detected in the blood,bone marrow,spleen,and liver of recipients by flow cytometry,qPCR,and histological analyses. Thus,intra-peritoneal injection is an efficient method of AML induction using serial transplantation of donor leukemic cells.
View Publication
文献
C. Sun et al. (dec 2022)
Immune network 22 6 e49
MiR-182-5p Mediated by Exosomes Derived From Bone Marrow Mesenchymal Stem Cell Attenuates Inflammatory Responses by Targeting TLR4 in a Mouse Model of Myocardial Infraction.
Exosomes derived from mesenchymal stem cells (MSCs) could protect against myocardial infarction (MI). TLR4 is reported to play an important role in MI,while microRNA-182-5p (miR-182-5p) negatively regulates TLR4 expression. Therefore,we hypothesize that MSCs-derived exosomes overexpressing miR-182-5p may have beneficial effects on MI. We generated bone marrow mesenchymal stem cells (BM-MSCs) and overexpressed miR-182-5p in these cells for exosome isolation. H2O2-stimulated neonatal mouse ventricle myocytes (NMVMs) and MI mouse model were employed,which were subjected to exosome treatment. The expression of inflammatory factors,heart function,and TLR4 signaling pathway activation were monitored. It was found that miR-182-5p decreased TLR4 expression in BM-MSCs and NMVMs. Administration of exosomes overexpressing miR-182-5p to H2O2-stimulated NMVMs enhanced cell viability and suppressed the expression of inflammatory cytokines. In addition,they promoted heart function,suppressed inflammatory responses,and de-activated TLR4/NF-$\kappa$B signaling pathway in MI mice. In conclusion,miR-182-5p transferred by the exosomes derived from BM-MSCs protected against MI-induced impairments by targeting TLR4.
View Publication
文献
M. Thelen et al. (dec 2022)
Journal for immunotherapy of cancer 10 12
Immune responses against shared antigens are common in esophago-gastric cancer and can be enhanced using CD40-activated B cells.
BACKGROUND Specific immune response is a hallmark of cancer immunotherapy and shared tumor-associated antigens (TAAs) are important targets. Recent advances using combined cellular therapy against multiple TAAs renewed the interest in this class of antigens. Our study aims to determine the role of TAAs in esophago-gastric adenocarcinoma (EGA). METHODS RNA expression was assessed by NanoString in tumor samples of 41 treatment-na{\{i}}ve EGA patients. Endogenous T cell and antibody responses against the 10 most relevant TAAs were determined by FluoroSpot and protein-bound bead assays. Digital image analysis was used to evaluate the correlation of TAAs and T-cell abundance. T-cell receptor sequencing in vitro expansion with autologous CD40-activated B cells (CD40Bs) and in vitro cytotoxicity assays were applied to determine specific expansion clonality and cytotoxic activity of expanded T cells. RESULTS 68.3% of patients expressed ??5 TAAs simultaneously with coregulated clusters which were similar to data from The Cancer Genome Atlas (n=505). Endogenous cellular or humoral responses against ??1??TAA were detectable in 75.0% and 53.7% of patients respectively. We found a correlation of T-cell abundance and the expression of TAAs and genes related to antigen presentation. TAA-specific T-cell responses were polyclonal could be induced or enhanced using autologous CD40Bs and were cytotoxic in vitro. Despite the frequent expression of TAAs co-occurrence with immune responses was rare. CONCLUSIONS We identified the most relevant TAAs in EGA for monitoring of clinical trials and as therapeutic targets. Antigen-escape rather than missing immune response should be considered as mechanism underlying immunotherapy resistance of EGA."
View Publication
文献
J. Qiu et al. (dec 2022)
STAR protocols 3 4 101828
Protocol to identify and analyze mouse and human quiescent hematopoietic stem cells using flow cytometry combined with confocal imaging.
Mitochondrial membrane potential (MMP) segregates functionally distinct subsets within highly purified hematopoietic stem cells (HSCs). Here,we detail a protocol for FACS isolation of MMP sub-fractions of phenotypically defined mouse and human HSCs. These steps are followed by high-/super-resolution immunofluorescence microscopy of HSCs' lysosomes. While the protocol describes the isolation of quiescent HSCs,which are the most potent subsets,it could also be applied to other HSC subsets. This protocol overcomes some experimental challenges associated with low HSC numbers. For complete details on the use and execution of this protocol,please refer to Liang et al. (2020) and Qiu et al. (2021).
View Publication
文献
R. S. Liwski et al. ( 2022)
Frontiers in genetics 13 1059650
Cutting through the weeds: Evaluation of a novel adsorption with crossmatch cells and elution protocol to sharpen HLA antibody identification by the single antigen bead assay.
The single antigen bead (SAB) assay is the most used test for the identification of HLA specific antibodies pre- and post-transplant. Nevertheless,detection of spurious reactivities remains a recognized assay limitation. In addition,the presence of weak reactivity patterns can complicate unacceptable antigen assignment. This work presents the evaluation of the adsorption with crossmatch cells and elution (AXE) technique,which was designed to help differentiate weak HLA specific antibodies targeting native antigens from spurious and background SAB assay reactivity. The AXE protocol uses selected donor cells to adsorb HLA specific antibodies from sera of interest. Bound antibodies are then eluted off washed cells and identified using the SAB assay. Only antibodies targeting native HLA are adsorbed. Assay evaluation was performed using five cell donors and pooled positive control serum. AXE efficiency was determined by comparing SAB reactivity of adsorbed/eluted antibody to that of the antibodies in unadsorbed sera. A robust efficiency was seen across a wide range of original MFI for donor specific antibodies (DSA). A higher absorption/elution recovery was observed for HLA class I antigens vs. class II. Locus-specific variation was also observed,with high-expression HLA loci (HLA-A/B/DR) providing the best recovery. Importantly,negligible reactivity was detected in the last wash control,confirming that AXE eluates were not contaminated with HLA antibody carry-over. Donor cells incubated with autologous and DSA-containing allogeneic sera showed that AXE selectively adsorbed HLA antibodies in a donor antigen-specific manner. Importantly,antibodies targeting denatured epitopes or other non-HLA antigens were not detected by AXE. AXE was particularly effective at distinguishing weak HLA antibodies from background reactivity. When combined with epitope analysis,AXE enhanced precise identification of antibody-targeted eplets and even facilitated the characterization of a potential novel eplet. Comparison of AXE to flow cytometric crossmatching further revealed that AXE was a more sensitive technique in the detection of weak DSA. Spurious reactivities on the current SAB assay have a deleterious impact on the assignment of clinically relevant HLA specificities. The AXE protocol is a novel test that enables users to interrogate reactive patterns of interest and discriminate HLA specific antibodies from spurious reactivity.
View Publication
文献
M. Blanter et al. (dec 2022)
Respiratory research 23 1 359
Sputum from patients with primary ciliary dyskinesia contains high numbers of dysfunctional neutrophils and inhibits efferocytosis.
BACKGROUND Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by recurrent airway infection and inflammation. There is no cure for PCD and to date there are no specific treatments available. Neutrophils are a crucial part of the immune system and are known to be dysfunctional in many inflammatory diseases. So far,the role of the neutrophils in PCD airways is largely unknown. The purpose of this study was to investigate the phenotype and function of airway neutrophils in PCD,and compare them to blood neutrophils. METHODS Paired peripheral blood and spontaneously expectorated sputum samples from patients with PCD (n??=??32) and a control group of patients with non-PCD,non-cystic fibrosis bronchiectasis (n??=??5) were collected. The expression of neutrophil-specific surface receptors was determined by flow cytometry. Neutrophil function was assessed by measuring the extent of actin polymerization,production of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs) in response to activating stimuli. RESULTS Sputum neutrophils displayed a highly activated phenotype and were unresponsive to stimuli that would normally induce ROS production,actin polymerization and the expulsion of NETs. In addition,PCD sputum displayed high activity of neutrophil elastase,and impaired the efferocytosis by healthy donor macrophages. CONCLUSIONS Sputum neutrophils in PCD are dysfunctional and likely contribute to ongoing inflammation in PCD airways. Further research should focus on anti-inflammatory therapies and stimulation of efferocytosis as a strategy to treat PCD.
View Publication
文献
Z. Zhang et al. (dec 2022)
Clinical epigenetics 14 1 173
Comparative analysis of the DNA methylation landscape in CD4, CD8, and B memory lineages.
BACKGROUND There is considerable evidence that epigenetic mechanisms and DNA methylation are critical drivers of immune cell lineage differentiation and activation. However,there has been limited coordinated investigation of common epigenetic pathways among cell lineages. Further,it remains unclear if long-lived memory cell subtypes differentiate distinctly by cell lineages. RESULTS We used the Illumina EPIC array to investigate the consistency of DNA methylation in B cell,CD4 T,and CD8 T na{\{i}}ve and memory cells states. In the process of na{\"{i}}ve to memory activation across the three lineages we identify considerable shared epigenetic regulation at the DNA level for immune memory generation. Further in central to effector memory differentiation our analyses revealed specific CpG dinucleotides and genes in CD4 T and CD8 T cells with DNA methylation changes. Finally we identified unique DNA methylation patterns in terminally differentiated effector memory (TEMRA) CD8 T cells compared to other CD8 T memory cell subtypes. CONCLUSIONS Our data suggest that epigenetic alterations are widespread and essential in generating human lymphocyte memory. Unique profiles are involved in methylation changes that accompany memory genesis in the three subtypes of lymphocytes."
View Publication
文献
P. Peng et al. (dec 2022)
Journal for immunotherapy of cancer 10 12
Activated NK cells reprogram MDSCs via NKG2D-NKG2DL and IFN-$\gamma$ to modulate antitumor T-cell response after cryo-thermal therapy.
BACKGROUND Myeloid-derived suppressor cells (MDSCs) can potently inhibit T-cell activity,promote growth and metastasis of tumor and contribute to resistance to immunotherapy. Targeting MDSCs to alleviate their protumor functions and immunosuppressive activities is intimately associated with cancer immunotherapy. Natural killer (NK) cells can engage in crosstalk with multiple myeloid cells to alter adaptive immune responses,triggering T-cell immunity. However,whether the NK-cell-MDSC interaction can modulate the T-cell immune response requires further study. Cryo-thermal therapy could induce the maturation of MDSCs by creating an acute inflammatory environment to elicit a CD4+ Th1-dominant immune response,but the mechanism regulating this process remains unclear. METHODS NK cells were depleted and NKG2D was blocked with monoclonal antibodies in vivo. MDSCs,NK cells and T cells were assessed by flow cytometry and isolated by magnetic-activated cell sorting (MACS). MDSCs and NK cells were cocultured with T cells to determine their immunological function. The transcriptional profiles of MDSCs were measured by qRT-PCR and RNA-sequencing. Isolated NK cells and MDSCs by MACS were cocultured to study the viability and maturation of MDSCs regulated by NK cells. TIMER was used to comprehensively examine the immunological,clinical,and genomic features of tumors. RESULTS NK-cell activation after cryo-thermal therapy decreased MDSC accumulation and reprogrammed immunosuppressive MDSCs toward a mature phenotype to promote T cell antitumor immunity. Furthermore,we discovered that NK cells could kill MDSCs via the NKG2D-NKG2DL axis and promote MDSC maturation by interferon gamma (IFN-$\gamma$) in response to NKG2D. In addition,CD4+ Th1-dominant antitumor immune response was dependent on NKG2D,which promoted the major histocompatibility complex …¡ pathway of MDSCs. High activated NK-cell infiltration and NKG2D level in tumors were positively correlated with better clinical outcomes. CONCLUSIONS Cryo-thermal therapy induces effective CD4+ Th1-dominant antitumor immunity by activating NK cells to reprogram MDSCs,providing a promising therapeutic strategy for cancer immunotherapy.
View Publication
文献
S. Trivedi et al. ( 2022)
Frontiers in allergy 3 1062412
IL-33 induces NF-$\kappa$B activation in ILC2 that can be suppressed by in vivo and ex vivo 17$\beta$-estradiol.
Asthmatic women tend to develop severe airway disease in their reproductive years,and 30%-40% of asthmatic women have peri-menstrual worsening of asthma symptoms. This indicates that fluctuations in ovarian hormones are involved in advancement of asthmatic disease and exacerbation of symptoms. Group 2 innate lymphoid cells,or ILC2,are readily detected in allergic conditions,such as rhinosinusitis,in individuals that develop nasal polyps do to allergen exposures,and in allergic asthma. ILC2 are airway localized immune cells activated by IL-33,an innate cytokine that perpetuates allergic inflammation by driving the production of IL-5 and IL-13. We have previously shown that ILC2 are highly activated in na{\{i}}ve and ovalbumin (OVA) challenged female BALB/c mice in comparison to male mice following stimulation with IL-33. Here we investigated the effect of steady-state ovarian hormones on ILC2 and the NF-$\kappa$B signaling pathway following OVA sensitization and challenge. We found that estrogen-treated ovariectomized mice (OVX-E2) that had been challenged with OVA had reduced IL-5 and IL-13 production by lung ILC2 as compared to lung ILC2 isolated from intact male and female sham-operated controls that had been treated with OVA. ILC2 were isolated from untreated animals and co-cultured ex vivo with and without estrogen plus IL-33. Those estrogen-treated ILC2 similarly produced less IL-5 and IL-13 in comparison to untreated and had reduced NF-$\kappa$B activation. Single-cell RNA sequencing showed that 120 genes were differentially expressed in male and female ILC2 and Nfkb1 was found among top-ranked regulatory interactions. Together these results provide new insight into the suppressive effect of estrogen on ILC2 which may be protective in female asthmatics. Understanding further how estrogen modulates ILC2 may provide therapeutic targets for the treatment of allergic diseases."
View Publication