技术资料
-
R. Guerrero-López et al. (Feb 2025) Scientific Reports 15 1Premature ageing of lung alveoli and bone marrow cells from Terc deficient mice with different telomere lengths
Telomeres are terminal protective chromosome structures. Genetic variants in genes coding for proteins required for telomere maintenance cause rare,life-threatening Telomere Biology Disorders (TBDs) such as dyskeratosis congenita,aplastic anemia or pulmonary fibrosis. The more frequently used mice strains have telomeres much longer than the human ones which question their use as in vivo models for TBDs. One mice model with shorter telomeres based on the CAST/EiJ mouse strain carrying a mutation in the Terc gene,coding for the telomerase RNA component,has been studied in comparison with C57BL/6J mice,carrying the same mutation and long telomeres. The possible alterations produced in lungs and the haematopoietic system,frequently affected in TBD patients,were determined at different ages of the mice. Homozygous mutant mice presented a very shortened life span,more notorious in the short-telomeres CAST/EiJ strain. The lungs of mutant mice presented a transitory increase in fibrosis and a significant decrease in the relative amount of the alveolar epithelial type 2 cells from six months of age. This decrease was larger in mutant homozygous animals but was also observed in heterozygous animals. On the contrary the expression of the senescence-related protein P21 increased from six months of age in mutant mice of both strains. The analysis of the haematopoietic system indicated a decrease in the number of megakaryocyte-erythroid progenitors in homozygous mutants and an increase in the clonogenic potential of bone marrow and LSK cells. Bone marrow cells from homozygous mutant animals presented decreasing in vitro expansion capacity. The alterations observed are compatible with precocious ageing of lung alveolar cells and the bone marrow cells that correlate with the alterations observed in TBD patients. The alterations seem to be more related to the genotype of the animals that to the basal telomere length of the strains although they are more pronounced in the short-telomere CAST/EiJ-derived strain than in C57BL/6J animals. Therefore,both animal models,at ages over 6–8 months,could represent valuable and convenient models for the study of TBDs and for the assay of new therapeutic products. View Publication -
K. Quaid et al. (Feb 2025) Nature Communications 16iPSCs and iPSC-derived cells as a model of human genetic and epigenetic variation
Understanding the interaction between genetic and epigenetic variation remains a challenge due to confounding environmental factors. We propose that human induced Pluripotent Stem Cells (iPSCs) are an excellent model to study the relationship between genetic and epigenetic variation while controlling for environmental factors. In this study,we have created a comprehensive resource of high-quality genomic,epigenomic,and transcriptomic data from iPSC lines and three iPSC-derived cell types (neural stem cell (NSC),motor neuron,monocyte) from three healthy donors. We find that epigenetic variation is most strongly associated with genetic variation at the iPSC stage,and that relationship weakens as epigenetic variation increases in differentiated cells. Additionally,cell type is a stronger source of epigenetic variation than genetic variation. Further,we elucidate a utility of studying epigenetic variation in iPSCs and their derivatives for identifying important loci for GWAS studies and the cell types in which they may be acting. Subject terms: Epigenomics,Genomics,Transcriptomics View Publication -
J. W. Fleming et al. (Jan 2025) Current Research in Toxicology 8An automated platform for simultaneous, longitudinal analysis of engineered neuromuscular tissues for applications in neurotoxin potency testing
Animal models of the neuromuscular junction (NMJ) have been widely studied but exhibit critical differences from human biology limiting utility in drug and disease modelling. Challenges with scarcity,scalability,throughput,and ethical considerations further limit the suitability of animal models for preclinical screening. Engineered models have emerged as alternatives for studying NMJ functionality in response to genetic and/or pharmacological challenge. However,these models have faced challenges associated with their poorly scalable creation,sourcing suitable cells,and the extraction of reliable,quantifiable metrics. We present a turnkey iPSC-based model of the NMJ employing channelrhodopsin-2 expression within the motor neuron (MN) population driving muscle contraction in response to blue light. MNs co-cultured with engineered skeletal muscle tissues produced twitch forces of 34.7 ± 22.7 µN in response to blue light,with a response fidelity > 92 %. Histological analysis revealed characteristic punctate acetylcholine receptor staining co-localized with the presynaptic marker synaptic vesicle protein-2. Dose-response studies using botulinum neurotoxin showed loss of function in a dose- and time-dependent manner (EC50 - 0.11 ± 0.015 µg). Variability of the EC50 values between 2 different iPSC differentiations of both cell types and 2 users was less than 2 %. Further testing with the acute neurotoxins acetylcholine mustard and d-tubocurarine validated the biological relevance of the postsynaptic machinery of the model. This model marks a meaningful progression of 3D engineered models of the NMJ,providing engineered tissues at a throughput relevant to potency and screening applications with an abundant iPSC cell source and standardized hardware-software ecosystem allowing technology transfer across laboratories. View Publication -
Kwon et al. (Feb 2025) International Journal of Molecular Sciences 26 3Therapeutic Potential of Adina rubella Hance Stem and Picroside III as a Differentiation Inducer in AML Cells via Mitochondrial ROS Accumulation
Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells and a differentiation block,highlighting the urgent need for novel differentiation-inducing therapies. This study evaluated Adina rubella Hance (ARH) stem as a potent differentiation inducer by systematically screening 200 plant extracts. ARH stem promoted phenotypic differentiation in AML cells. In addition to its differentiation-inducing effects,ARH stem exhibited strong antileukemic activities,such as inhibiting cell proliferation,inducing cell death,and enhancing mitochondrial reactive oxygen species (mtROS) levels,the latter of which is critical for its differentiation-promoting activity. Comparative analysis with the extracts from other parts of the plant confirmed the superior efficacy of the stem extract because of its unique chemical composition. Ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry analysis identified Picroside III as a major active compound within the stem extract,capable of recapitulating ARH stem-induced differentiation and demonstrating significant antileukemic properties. These findings underscore the therapeutic potential of ARH stem and its active component,Picroside III,as promising agents for differentiation-based treatment strategies in AML. View Publication -
Brembilla et al. (Jan 2025) International Journal of Molecular Sciences 26 3Adipose-Derived Stromal Cells Exposed to RGD Motifs Enter an Angiogenic Stage Regulating Endothelial Cells
Adipose-derived stromal cells (ASCs) possess significant regenerative potential,playing a key role in tissue repair and angiogenesis. During wound healing,ASC interacts with the extracellular matrix by recognizing arginylglycylaspartic acid (RGD) motifs,which are crucial for mediating these functions. This study investigates how RGD exposure influences ASC behavior,with a focus on angiogenesis. To mimic the wound-healing environment,ASC were cultured in a porcine gelatin sponge,an RGD-exposing matrix. Transcriptomics revealed that ASC cultured in gelatin exhibited an upregulated expression of genes associated with inflammation,angiogenesis,and tissue repair compared to ASC in suspension. Pro-inflammatory and pro-angiogenic factors,including IL-1,IL-6,IL-8,and VEGF,were significantly elevated. Functional assays further demonstrated that ASC-conditioned media enhanced endothelial cell migration,tubulogenesis,and reduced endothelial permeability,all critical processes in angiogenesis. Notably,ASC-conditioned media also promoted vasculogenesis in human vascular organoids. The inhibition of ASC-RGD interactions using the cyclic peptide cilengitide reversed these effects,underscoring the essential role of RGD-integrin interactions in ASC-mediated angiogenesis. These findings suggest that gelatin sponges enhance ASC’s regenerative and angiogenic properties via RGD-dependent mechanisms,offering promising therapeutic potential for tissue repair and vascular regeneration. Understanding how RGD modulates ASC behavior provides valuable insights into advancing cell-based regenerative therapies. View Publication -
R. M. Chugh et al. (Feb 2025) Cell Communication and Signaling : CCS 23 11Modulation of β-Catenin promotes WNT expression in macrophages and mitigates intestinal injury
Macrophages are the major source of WNT ligands. However,the regulation of WNT expression in macrophages has not been studied. In the present study,we have discovered that activation of canonical β-Catenin signaling suppresses WNT expression in macrophages. EVs from these pre-conditioned macrophages promoted intestinal stem cell regeneration and mitigated intestinal injury. ChIP-seq analysis and validation studies using recombinant DNA construct expressing Luciferase reporter under WNT promoter (e.g. WNT5a and WNT9b) were conducted to demonstrate the involvement of β-Catenin in the transcriptional regulation of WNT expression. The regulatory role of β-Catenin in WNT expression in macrophages was examined by treating these cells with a Tankyrase inhibitor. In addition,the gene expressing β-Catenin was deleted in macrophages using Csf1r.iCre; Ctnnb1 fl/fl mice model. Both pharmacological and genetically modulated macrophages were examined for WNT expression and activity by qPCR and TCF/LEF luciferase assay respectively. Additionally,Csf1r.iCre; Ctnnb1 fl/fl mice were exposed to irradiation to compare the radiosensitivity with their wildtype littermate. Extracellular vesicles (EVs) were isolated from pre-conditioned WNT-enriched macrophages and infused in irradiated C57BL/6 and Lgr5/eGFP-IRES-Cre-ERT2 ; R26-ACTB-tdTomato-EGFP mice to determine the regenerative response of intestinal stem cell (ISC) and epithelial repair. Regenerative effects of EVs were also examined in mice model DSS induced colitis. ChIP-seq analysis and subsequent validation study suggested physical association of β-Catenin with WNT promoters to suppress WNT expression. Macrophage specific deletion of gene expressing β-Catenin or pharmacological inhibition of Tankyrase improves the WNT expression in macrophages several folds compared to control. Transfusion of these preconditioned macrophages or EVs from these cells delivers optimum level of morphogenic WNT to injured epithelium,activates ISC regeneration and mitigated radiation induced intestinal injury. Intestinal epithelium in Csf1r.iCre; Ctnnb1 fl/fl mice also showed radioresistance compared to wild type littermate. Moreover,EVs derived from WNT enriched macrophages can mitigate intestinal injury in mice model of DSS induced acute colitis. The study provides substantial evidence that macrophage-targeted modulation of canonical WNT signaling induces WNT expression in macrophages. Treatment with preconditioned macrophage derived WNT-enriched EVs can be a promising therapeutic approach against intestinal injury. The online version contains supplementary material available at 10.1186/s12964-025-02065-7. View Publication -
S. D. Narasipura et al. (Feb 2025) Journal of Neuroinflammation 22 1Inflammatory responses revealed through HIV infection of microglia-containing cerebral organoids
Cerebral organoids (COs) are valuable tools for studying the intricate interplay between glial cells and neurons in brain development and disease,including HIV-associated neuroinflammation. We developed a novel approach to generate microglia containing COs (CO-iMs) by co-culturing hematopoietic progenitors and inducing pluripotent stem cells. This approach allowed for the differentiation of microglia within the organoids concomitantly with the neuronal progenitors. Compared with conventional COs,CO-iMs were more efficient at generating CD45 + /CD11b + /Iba-1 + microglia and presented a physiologically relevant proportion of microglia (~ 7%). CO-iMs presented substantially increased expression of microglial homeostatic and sensome markers as well as markers for the complement cascade. CO-iMs are susceptible to HIV infection,resulting in a significant increase in several pro-inflammatory cytokines/chemokines,which are abrogated by the addition of antiretrovirals. Thus,CO-iM is a robust model for deciphering neuropathogenesis,neuroinflammation,and viral infections of brain cells in a 3D culture system. The online version contains supplementary material available at 10.1186/s12974-025-03353-2. View Publication -
S. L. Schneider et al. (Feb 2025) Applied Microbiology and Biotechnology 109 1Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1
To fully utilize the potential of human induced pluripotent stem cells (hiPSCs) for allogeneic stem cell–based therapies,efficient and scalable expansion procedures must be developed. For other adherent human cell types,the combination of microcarriers (MCs) and stirred tank bioreactors has been shown to meet these demands. In this study,a hiPSC quasi-perfusion expansion procedure based on MCs was developed at 100-mL scale in spinner flasks. Process development began by assessing various medium exchange strategies and MC coatings,indicating that the hiPSCs tolerated the gradual exchange of medium well when cultivated on Synthemax II–coated MCs. This procedure was therefore scaled-up to the 1.3-L Eppendorf BioBLU 1c stirred tank bioreactor by applying the lower limit of Zwietering’s suspension criterion ( N s 1 u ),thereby demonstrating proof-of-concept when used in combination with hiPSCs for the first time. To better understand the bioreactor and its bioengineering characteristics,computational fluid dynamics and bioengineering investigations were performed prior to hiPSC cultivation. In this manner,improved process understanding allowed an expansion factor of ≈ 26 to be achieved,yielding more than 3 × 10 9 cells within 5 days. Further quality analyses confirmed that the hiPSCs maintained their viability,identity,and differentiation potential throughout cultivation. • N s 1 u can be used as a scale-up criterion for hiPSC cultivations in MC-operated stirred bioreactors • Uniform distribution and attachment of cells to the MCs are crucial for efficient expansion • Perfusion is advantageous and supports the cultivation of hiPSCs The online version contains supplementary material available at 10.1007/s00253-024-13372-3. View Publication -
K. Desai et al. (Feb 2025) Nature Communications 16OLIG2 mediates a rare targetable stem cell fate transition in sonic hedgehog medulloblastoma
Functional cellular heterogeneity in tumours often underlies incomplete response to therapy and relapse. Previously,we demonstrated that the growth of the paediatric brain malignancy,sonic hedgehog subgroup medulloblastoma,is rooted in a dysregulated developmental hierarchy,the apex of which is defined by characteristically quiescent SOX2 + stem-like cells. Integrating gene expression and chromatin accessibility patterns in distinct cellular compartments,we identify the transcription factor Olig2 as regulating the stem cell fate transition from quiescence to activation,driving the generation of downstream neoplastic progenitors. Inactivation of Olig2 blocks stem cell activation and tumour output. Targeting this rare OLIG2-driven proliferative programme with a small molecule inhibitor,CT-179,dramatically attenuates early tumour formation and tumour regrowth post-therapy,and significantly increases median survival in vivo. We demonstrate that targeting transition from quiescence to proliferation at the level of the tumorigenic cell could be a pivotal medulloblastoma treatment strategy. Subject terms: Cancer stem cells,Mechanisms of disease,Cancer therapy View Publication -
Li et al. (Feb 2025) Nature Communications 16Allogeneic CD33-directed CAR-NKT cells for the treatment of bone marrow-resident myeloid malignancies
Chimeric antigen receptor (CAR)-engineered T cell therapy holds promise for treating myeloid malignancies,but challenges remain in bone marrow (BM) infiltration and targeting BM-resident malignant cells. Current autologous CAR-T therapies also face manufacturing and patient selection issues,underscoring the need for off-the-shelf products. In this study,we characterize primary patient samples and identify a unique therapeutic opportunity for CAR-engineered invariant natural killer T (CAR-NKT) cells. Using stem cell gene engineering and a clinically guided culture method,we generate allogeneic CD33-directed CAR-NKT cells with high yield,purity,and robustness. In preclinical mouse models,CAR-NKT cells exhibit strong BM homing and effectively target BM-resident malignant blast cells,including CD33-low/negative leukemia stem and progenitor cells. Furthermore,CAR-NKT cells synergize with hypomethylating agents,enhancing tumor-killing efficacy. These cells also show minimal off-tumor toxicity,reduced graft-versus-host disease and cytokine release syndrome risks,and resistance to allorejection,highlighting their substantial therapeutic potential for treating myeloid malignancies. Subject terms: Cancer therapy,Immunotherapy,Leukaemia View Publication -
R. Xu et al. (Jan 2025) Cancer Cell International 25 4Formin protein DAAM1 positively regulates PD-L1 expression via mediating the JAK1/STAT1 axis in pancreatic cancer
Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer. Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer. The LinkedOmics platform was employed to perform enrichment analysis of DAAM1-associated molecular pathways in pancreatic cancer. Subsequently,a series of in vitro and in vivo experiments were conducted to evaluate the biological roles of DAAM1 in pancreatic cancer cells and its effects on intratumoral T cells. DAAM1 was found to be upregulated in pancreatic cancer tissues,with higher expression levels observed in tumor cells. Additionally,high expression of DAAM1 was associated with poor prognosis. DAAM1 acted as an oncogene in pancreatic cancer,and its inhibition suppressed tumor cell proliferation,migration,and invasion,while promoted apoptosis. Furthermore,DAAM1 was involved in the JAK1/STAT1 signaling pathway and regulated PD-L1 expression in pancreatic cancer cells. The inhibition of DAAM1 also significantly reduced the exhaustion levels of CD8+ T cells. In conclusion,DAAM1 functions as an oncogene and is immunologically implicated in pancreatic cancer,these findings suggest that DAAM1 may serve as a promising therapeutic target for the clinical management of pancreatic cancer. The online version contains supplementary material available at 10.1186/s12935-024-03631-8. View Publication -
Q. Shi et al. (Jan 2025) Breast Cancer Research : BCR 27CXCR4 promotes tumor stemness maintenance and CDK4/6 inhibitors resistance in ER-positive breast cancer
CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer,becoming a first-line treatment option. However,the development of resistance to these inhibitors is inevitable. To address this challenge,novel strategies are required to overcome resistance,necessitating a deeper understanding of its mechanisms. Recent research has identified several dysregulated genes in CDK4/6 inhibitors-resistant breast cancer,but the underlying mechanism is complex due to tumor heterogeneity and warrants further investigation. RNA sequencing and KEGG pathway analysis was carried out to identify the mainly dysregulated genes in CDK4/6 inhibitors-resistant breast cancer cells. The effects of CXCR4 knockdown and overexpression via siRNAs and plasmids transfection were examined by mammosphere formation,RT-qPCR,flow cytometry,MTT and colony formation assays. The regulation mechanisms were analyzed by RT-qPCR,western blotting and immunofluorescence experiments. Mouse xenografts were used to analyze the role of CXCR4 in regulation palbociclib sensitivity in vivo. Additionally,we collected the clinical samples and performed immunohistochemistry to analyze the clinical significance of CXCR4. In our study,we focused on cancer stem cells,a critical contributor to cancer metastasis and therapy resistance,and detected an upregulation of stemness in our established palbociclib-resistant ER-positive breast cancer cells. Additionally,our research pinpointed CXCR4 as a pivotal gene responsible for maintaining cancer stemness and promoting palbociclib resistance. Mechanistically,CXCR4 activates the WNT5A/β-catenin signaling pathway by enhancing the expression of WNT5A and β-catenin,facilitating the nuclear translocation of β-catenin protein. Targeting CXCR4 using siRNAs or small molecular inhibitors effectively reduces cancer stemness and reverses palbociclib resistance both in vitro and in vivo. Clinical sample analysis further underscores the overactivation of the CXCR4/WNT5A/β-catenin axis in palbociclib-resistant breast cancer,suggesting CXCR4 as a potential biomarker for predicting resistance to CDK4/6 inhibitors. Collectively,our study demonstrates that CXCR4 overexpression plays a vital role in maintaining breast cancer stemness and promoting resistance to CDK4/6 inhibitors through the activation of the WNT5A/β-catenin pathway. Targeting CXCR4 may offer a promising therapeutic approach for advanced CDK4/6 inhibitor-resistant ER-positive breast cancer. The online version contains supplementary material available at 10.1186/s13058-025-01965-3. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 59 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1032 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2916 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 206 项目
- 癌症 7 项目
- 神经科学 663 项目
- 移植研究 106 项目
- 类器官 155 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 74 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 63 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 894 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 153 项目
- MethoCult 509 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 251 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 236 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 452 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 103 项目
- 先天性淋巴细胞 40 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 20 项目
- 单个核细胞 92 项目
- 单核细胞 191 项目
- 多能干细胞 1985 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 471 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 983 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 204 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 107 项目
- CD8+T细胞 88 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 115 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 191 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号