Boucherie C et al. (FEB 2013)
Stem Cells 31 2 408--414
Brief Report: Self-Organizing Neuroepithelium from Human Pluripotent Stem Cells Facilitates Derivation of Photoreceptors
Retinitis pigmentosa,other inherited retinal diseases,and age-related macular degeneration lead to untreatable blindness because of the loss of photoreceptors. We have recently shown that transplantation of mouse photoreceptors can result in improved vision. It is therefore timely to develop protocols for efficient derivation of photoreceptors from human pluripotent stem (hPS) cells. Current methods for photoreceptor derivation from hPS cells require long periods of culture and are rather inefficient. Here,we report that formation of a transient self-organized neuroepithelium from human embryonic stem cells cultured together with extracellular matrix is sufficient to induce a rapid conversion into retinal progenitors in 5 days. These retinal progenitors have the ability to differentiate very efficiently into Crx+ photoreceptor precursors after only 10 days and subsequently acquire rod photoreceptor identity within 4 weeks. Directed differentiation into photoreceptors using this protocol is also possible with human-induced pluripotent stem (hiPS) cells,facilitating the use of patient-specific hiPS cell lines for regenerative medicine and disease modeling. STEM CELLS2013;31:408–414
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
E. Lin-Shiao et al. (feb 2022)
Nucleic acids research 50 3 1256--1268
CRISPR-Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells.
DNA nanostructures are a promising tool to deliver molecular payloads to cells. DNA origami structures,where long single-stranded DNA is folded into a compact nanostructure,present an attractive approach to package genes; however,effective delivery of genetic material into cell nuclei has remained a critical challenge. Here,we describe the use of DNA nanostructures encoding an intact human gene and a fluorescent protein encoding gene as compact templates for gene integration by CRISPR-mediated homology-directed repair (HDR). Our design includes CRISPR-Cas9 ribonucleoprotein binding sites on DNA nanostructures to increase shuttling into the nucleus. We demonstrate efficient shuttling and genomic integration of DNA nanostructures using transfection and electroporation. These nanostructured templates display lower toxicity and higher insertion efficiency compared to unstructured double-stranded DNA templates in human primary cells. Furthermore,our study validates virus-like particles as an efficient method of DNA nanostructure delivery,opening the possibility of delivering nanostructures in vivo to specific cell types. Together,these results provide new approaches to gene delivery with DNA nanostructures and establish their use as HDR templates,exploiting both their design features and their ability to encode genetic information. This work also opens a door to translate other DNA nanodevice functions,such as biosensing,into cell nuclei.
View Publication
产品类型:
产品号#:
17951
18000
产品名:
EasySep™人T细胞分选试剂盒
EasySep™磁极
文献
Vodyanik MA et al. (JAN 2005)
Blood 105 2 617--26
Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential.
Embryonic stem (ES) cells have the potential to serve as an alternative source of hematopoietic precursors for transplantation and for the study of hematopoietic cell development. Using coculture of human ES (hES) cells with OP9 bone marrow stromal cells,we were able to obtain up to 20% of CD34+ cells and isolate up to 10(7) CD34+ cells with more than 95% purity from a similar number of initially plated hES cells after 8 to 9 days of culture. The hES cell-derived CD34+ cells were highly enriched in colony-forming cells,cells expressing hematopoiesis-associated genes GATA-1,GATA-2,SCL/TAL1,and Flk-1,and retained clonogenic potential after in vitro expansion. CD34+ cells displayed the phenotype of primitive hematopoietic progenitors as defined by co-expression of CD90,CD117,and CD164,along with a lack of CD38 expression and contained aldehyde dehydrogenase-positive cells as well as cells with verapamil-sensitive ability to efflux rhodamine 123. When cultured on MS-5 stromal cells in the presence of stem cell factor,Flt3-L,interleukin 7 (IL-7),and IL-3,isolated CD34+ cells differentiated into lymphoid (B and natural killer cells) as well as myeloid (macrophages and granulocytes) lineages. These data indicate that CD34+ cells generated through hES/OP9 coculture display several features of definitive hematopoietic stem cells.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Wilson HK et al. (DEC 2016)
Tissue engineering. Part C,Methods 22 12 1085--1094
Cryopreservation of Brain Endothelial Cells Derived from Human Induced Pluripotent Stem Cells Is Enhanced by Rho-Associated Coiled Coil-Containing Kinase Inhibition.
The blood-brain barrier (BBB) maintains brain homeostasis but also presents a major obstacle to brain drug delivery. Brain microvascular endothelial cells (BMECs) form the principal barrier and therefore represent the major cellular component of in vitro BBB models. Such models are often used for mechanistic studies of the BBB in health and disease and for drug screening. Recently,human induced pluripotent stem cells (iPSCs) have emerged as a new source for generating BMEC-like cells for use in in vitro human BBB studies. However,the inability to cryopreserve iPSC-BMECs has impeded implementation of this model by requiring a fresh differentiation to generate cells for each experiment. Cryopreservation of differentiated iPSC-BMECs would have a number of distinct advantages,including enabling production of larger scale lots,decreasing lead time to generate purified iPSC-BMEC cultures,and facilitating use of iPSC-BMECs in large-scale screening. In this study,we demonstrate that iPSC-BMECs can be successfully cryopreserved at multiple differentiation stages. Cryopreserved iPSC-BMECs retain high viability,express standard endothelial and BBB markers,and reach a high transendothelial electrical resistance (TEER) of ∼3000 Ωtextperiodcenteredcm(2),equivalent to nonfrozen controls. Rho-associated coiled coil-containing kinase (ROCK) inhibitor Y-27632 substantially increased survival and attachment of cryopreserved iPSC-BMECs,as well as stabilized TEER above 800 Ωtextperiodcenteredcm(2) out to 7 days post-thaw. Overall,cryopreservation will ease handling and storage of high-quality iPSC-BMECs,reducing a key barrier to greater implementation of these cells in modeling the human BBB.
View Publication
Ramalho AC et al. (APR 2002)
European cytokine network 13 1 39--45
Estradiol and raloxifene decrease the formation of multinucleate cells in human bone marrow cultures.
Estrogen (E2) deficiency is responsible for increased bone turnover in the postmenopausal period,and it can be prevented by estrogen replacement therapy. The way estrogen acts on bone cells is not fully understood. Human bone marrow cell cultures may be a reliable model for studying the action of steroids on osteoclastogenesis in vitro. We examine the effects of estradiol and Raloxifene,a selective estrogen receptor modulator,on human primary bone marrow cells cultured for 15 days. 17beta-estradiol and Raloxifene significantly decreased the number of tartrate-resistant acid phosphatase multinucleate cells from osteoclast precursors on day 15. Estrogen receptor alpha (ER-alpha) mRNA was present in bone marrow mononuclear cells cultured for 5 days,but there was no estrogen receptor beta (ER-beta) mRNA,suggesting that this effect was mediated by ER-alpha. 15-day cultures no longer contained ER-alpha mRNA,suggesting that estrogen acts on early events of osteoclast differentiation. Finally,10-8 M 17beta-estradiol has no effect on the release of IL-6 and IL-6-sr into the medium of marrow mononuclear cells cultured for 5 or 15 days. Osteoclast apoptosis was not affected by estradiol or Raloxifene after 15 days of culture under our conditions. In conclusion,we have shown that both estradiol and Raloxifene inhibit osteoclast differentiation in human bone marrow mononuclear cultures. The biological effect that can mimic in vivo differentiation could be mediated through ER-alpha.
View Publication
产品类型:
产品号#:
产品名:
文献
Hess DA et al. (MAR 2008)
Stem cells (Dayton,Ohio) 26 3 611--20
Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity.
Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However,development of cell-based regenerative therapies has been hindered by the lack of preclinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII mice,we characterized the distribution of lineage-depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase (ALDH) activity with CD133 coexpression. ALDH(hi) or ALDH(hi)CD133+ cells produced robust hematopoietic reconstitution and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that coexpressed human leukocyte antigen (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues,including islet and ductal regions of mouse pancreata. In contrast,variable phenotypes were detected in the chimeric liver,with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels and CD45-/HLA- cells with diluted GUSB expression predominant in the liver parenchyma. However,true nonhematopoietic human (HLA+/CD45-) cells were rarely detected in other peripheral tissues,suggesting that these GUSB+/HLA-/CD45- cells in the liver were a result of downregulated human surface marker expression in vivo,not widespread seeding of nonhematopoietic cells. However,relying solely on continued expression of cell surface markers,as used in traditional xenotransplantation models,may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes,indicating that these adult progenitor cells should be explored in transplantation models of tissue damage.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Sun AX et al. (AUG 2016)
Cell reports 16 7 1942--1953
Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells.
Gamma-aminobutyric acid (GABA)-releasing interneurons play an important modulatory role in the cortex and have been implicated in multiple neurological disorders. Patient-derived interneurons could provide a foundation for studying the pathogenesis of these diseases as well as for identifying potential therapeutic targets. Here,we identified a set of genetic factors that could robustly induce human pluripotent stem cells (hPSCs) into GABAergic neurons (iGNs) with high efficiency. We demonstrated that the human iGNs express neurochemical markers and exhibit mature electrophysiological properties within 6-8 weeks. Furthermore,in vitro,iGNs could form functional synapses with other iGNs or with human-induced glutamatergic neurons (iENs). Upon transplantation into immunodeficient mice,human iGNs underwent synaptic maturation and integration into host neural circuits. Taken together,our rapid and highly efficient single-step protocol to generate iGNs may be useful to both mechanistic and translational studies of human interneurons.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Wergedal JE et al. (JAN 1992)
Metabolism: clinical and experimental 41 1 42--8
Differentiation of normal human bone cells by transforming growth factor-beta and 1,25(OH)2 vitamin D3.
To investigate the role of transforming growth factor-beta 1 (TGF beta) in bone metabolism,the effects of this agent on the differentiation characteristics of human bone cells were studied in vitro. Human bone cells were isolated from femoral head samples by collagenase digestion. Differentiation characteristics included alkaline phosphatase activity,osteocalcin production,and mRNA levels for alkaline phosphatase,type I alpha 2-procollagen,and osteocalcin. The effect of TGF beta on alkaline phosphatase was not constant,but varied with the incubation conditions. At high cell density and in the presence of serum,TGF beta decreased alkaline phosphatase activity. However,at low cell density and under serum-free conditions,TGF beta stimulated alkaline phosphatase activity. The addition of 1,25(OH)2 vitamin D3 also stimulated alkaline phosphatase. The combination of the two agents gave a greater increase in activity than the sum of the activities when the two agents were given alone. The percentage of cells that stain positively for alkaline phosphatase changed in parallel with the change in specific activity. The percentage of positive cells increased from 17% to 64%,while the specific activity increased from 22 to 169 mU/mg protein. To investigate the mechanism of this stimulation,mRNA levels were measured at 24 hours. Individually,TGF beta and 1,25(OH)2D3 increased message levels for alkaline phosphatase and type I procollagen,but the greatest effect was produced by the combination of the two factors. 1,25(OH)2D3 increased osteocalcin mRNA levels,but TGF beta markedly inhibited this stimulation. TGF beta also inhibited production of osteocalcin by the human bone cells. TGF beta appears to modulate differentiation of human bone cells in combination with 1,25(OH)2D3 and other factors.
View Publication
产品类型:
产品号#:
72412
产品名:
骨化三醇(Calcitriol)
文献
Onyshchenko MI et al. (JAN 2012)
Stem Cells International 2012 634914
Stimulation of cultured h9 human embryonic stem cells with thyroid stimulating hormone does not lead to formation of thyroid-like cells.
The sodium-iodine symporter (NIS) is expressed on the cell membrane of many thyroid cancer cells,and is responsible for the radioactive iodine accumulation. However,treatment of anaplastic thyroid cancer is ineffective due to the low expression of NIS on cell membranes of these tumor cells. Human embryonic stem cells (ESCs) provide a potential vehicle to study the mechanisms of NIS expression regulation during differentiation. Human ESCs were maintained on feeder-independent culture conditions. RT-qPCR and immunocytochemistry were used to study differentiation marker expression,(125)I uptake to study NIS function. We designed a two-step protocol for human ESC differentiation into thyroid-like cells,as was previously done for mouse embryonic stem cells. First,we obtained definitive endoderm from human ESCs. Second,we directed differentiation of definitive endoderm cells into thyroid-like cells using various factors,with thyroid stimulating hormone (TSH) as the main differentiating factor. Expression of pluripotency,endoderm and thyroid markers and (125)I uptake were monitored throughout the differentiation steps. These approaches did not result in efficient induction of thyroid-like cells. We conclude that differentiation of human ESCs into thyroid cells cannot be induced by TSH media supplementation alone and most likely involves complicated developmental patterns that are yet to be understood.
View Publication
产品类型:
产品号#:
36254
78001
78001.1
78001.2
78001.3
85850
85857
产品名:
DMEM/F-12 with 15 mM HEPES
重组人/小鼠激活素A
重组人/小鼠激活素A
重组人/小鼠激活素A
重组人/小鼠激活素A
mTeSR™1
mTeSR™1
文献
Lansdorp PM and Dragowska W (JUN 1992)
The Journal of experimental medicine 175 6 1501--9
Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow.
To directly study the biological properties of purified hematopoietic colony-forming cell precursors,cells with a CD34+ CD45RAlo CD71lo phenotype were purified from human bone marrow using density separation and fluorescence-activated cell sorting,and were cultured in serum-free culture medium supplemented with various cytokines. In the presence of interleukin 3 (IL-3),IL-6,erythropoietin,and mast cell growth factor (a c-kit ligand),cell numbers increased approximately 10(6)-fold over a period of 4 wk,and the percentage of cells that expressed transferrin receptors (CD71) increased from less than 0.1% at day 0 to greater than 99% at day 14. Interestingly,the absolute number of CD34+ CD71lo cells did not change during culture. When CD34+ CD71lo cells were sorted from expanded cultures and recultured,extensive cell production was repeated,again without significant changes in the absolute number of cells with the CD34+ CD71lo phenotype that were used to initiate the (sub)cultures. These results document that primitive hematopoietic cells can generate progeny without an apparent decrease in the size of a precursor cell pool.
View Publication
产品类型:
产品号#:
02690
02696
02697
09300
09500
09600
09650
产品名:
StemSpan™CC100
StemSpan™巨核细胞扩增补充(100X)
StemSpan™CC110
含有10% 牛血清白蛋白(BSA)的 Iscove's MDM
BIT 9500血清替代物
StemSpan™ SFEM
StemSpan™ SFEM
文献
Borchin B et al. (DEC 2013)
Stem Cell Reports 1 6 620--631
Derivation and FACS-Mediated Purification of PAX3+/PAX7+ Skeletal Muscle Precursors from Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) constitute a promising resource for use in cell-based therapies and a valuable in vitro model for studying early human development and disease. Despite significant advancements in the derivation of specific fates from hPSCs,the generation of skeletal muscle remains challenging and is mostly dependent on transgene expression. Here,we describe a method based on the use of a small-molecule GSK3?? inhibitor to derive skeletal muscle from several hPSC lines. We show that early GSK3?? inhibition is sufficient to create the conditions necessary for highly effective derivation of muscle cells. Moreover,we developed a strategy for stringent fluorescence-activated cell sorting-based purification of emerging PAX3+/PAX7+ muscle precursors that are able to differentiate in postsort cultures into mature myocytes. This transgene-free,efficient protocol provides an essential tool for producing myogenic cells for in vivo preclinical studies,in vitro screenings,and disease modeling. ?? 2013 The Authors.
View Publication