Generation of human induced pluripotent stem cell lines from patients with FGFR2 -linked syndromic craniosynostosis
M. Gijsbertsen et al.
Disease Models & Mechanisms 2025 Sep
Abstract
Craniosynostosis is a multigenic congenital condition in which one or more calvarial sutures have prematurely fused during the development of the fetus. Pathogenic variants in FGFR2 are associated with the development of syndromic craniosynostosis, such as Crouzon, Apert and Pfeifer syndromes. Investigation of FGFR2 -linked craniosynostosis is hindered by the lack of appropriate in vitro models. Patient-derived human induced pluripotent stem cell (hiPSC) in vitro disease models provide the opportunity to investigate the disease, identify molecular targets for pharmaceutical treatments, and enable the generation of autologous pluripotent stem cell catalogues. Here, we report three patient-derived hiPSC lines carrying the C342Y, S252W or E565G FGFR2 pathogenic variant. The patient hiPSC lines express characteristic pluripotency markers and display distinct phosphorylation profiles under unstimulated conditions. FGFR2 C342Y showed autophosphorylation in the absence of bFGF ligand, although downstream docking proteins PLCγ and FRS2α were not phosphorylated. FGFR2 S252W and FGFR2 E565G hiPSCs showed increased phosphorylation of docking proteins PLCγ and FRS2α, whereas FGFR2 was not phosphorylated. These patient hiPSC lines provide molecular and cellular options to investigate FGFR2 -linked craniosynostosis in the patient-specific genomic context and develop therapeutic modalities.
Therapeutic potential of NGF-enriched extracellular vesicles in modulating neuroinflammation and enhancing peripheral nerve remyelination
Acta Neuropathologica Communications 2025 May
Abstract
Neurological damage caused by peripheral nerve injury can be devastating and is a common neurological disorder that, along with muscle disorders, reduces the quality of life. Neural crest cells (NCCs) are a transient cell population that occurs during embryogenesis, can differentiate into various cells upon transplantation, and has potential therapeutic effects on neurological diseases. However, there are limitations to cell therapy, such as uncontrolled differentiation and tumor formation. Extracellular vesicles (EVs), which are non-cellular potential therapeutic candidates, are nanosized membrane-bound vesicles. Studies have been reported using starch cells derived from neural cells, such as neural stem cells, because they are involved in cell-to-cell communication and carry a variety of bioactive molecules. We investigated the effects of EVs isolated from NCCs on neuronal cell death and inflammation. Additionally, we overexpressed the nerve growth factor (NGF), which is involved in neural cell growth and proliferation, in NCCs to further investigate the effects of EVs containing NGF. NCCoe-NGF-EVs showed neuroprotective and regenerative properties by modulating inflammatory pathway, promoting Schwann cell activation, and enhancing remyelination. In vitro studies on NCCoe-NGF-EVs suppressed pro-inflammatory cytokines and reduced oxidative stress-induced neuronal apoptosis through NF-?B pathway inhibition and ERK, AKT signal activation. We also evaluated the effect of EVs on neuropathy by performing in vivo study. Our results suggest that NCCoe-NGF-EV had neuroprotective effects by reducing neuronal apoptosis and promoting neuronal proliferation based on neurite outgrowth and anti-inflammation effects treated with NCCoe-NGF-EVs. In addition, NCCoe-NGF-EVs were protected muscle loss caused by peripheral nerve injury. NCCoe-NGF-EV induced regeneration of damaged nerves and inhibited cell death through anti-inflammatory effects. This study suggests the potential of NGF-enriched EVs as non-cellular therapeutic platform for peripheral neuropathies and other neuroinflammatory disorders.Graphical abstract
Supplementary InformationThe online version contains supplementary material available at 10.1186/s40478-025-02033-9.
Rapid iPSC-derived neuromuscular junction model uncovers motor neuron dominance in amyotrophic lateral sclerosis cytopathy
Cell Death Discovery 2025 Jan
Abstract
The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties. To overcome these limitations, we developed a rapid human NMJ model using cryopreserved MNs and SKMs derived from iPSCs. Within 12 days of coculture, we successfully recreated NMJ-specific connectivity that closely mirrors in vivo synapse formation. Using this model, we investigated amyotrophic lateral sclerosis (ALS) and replicated ALS-specific NMJ cytopathies with SOD1 mutant and corrected isogenic iPSC lines. Quantitative analysis of 3D confocal microscopy images revealed a critical role of MNs in initiating ALS-related NMJ cytopathies, characterized by alterations in the volume, number, intensity, and distribution of acetylcholine receptors, ultimately leading to impaired muscle contractions. Our rapid and precise in vitro NMJ model offers significant potential for advancing research on NMJ physiology and pathology, as well as for developing treatments for NMJ-related diseases.
Thank you for your interest in IntestiCult™ Organoid Growth Medium (Human). Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they
can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our
privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
本产品系基于WiCell™研究院(WiCell™ Research Institute)知识产权授权许可开发。本产品的出售目的仅限于基于不可转让、用途受限之许可下的研究用途(无论购买者为学术机构或营利性主体)。购买本产品并不被授予为商业用途(即,以获利为目的的任何行为,如将本产品用于制造用途、或转售本产品或使用本产品所制成的任何材料、或将本产品或使用本产品所制成的材料用于提供服务)或临床应用(即,将本产品或本产品所用材料应用于人体)而出售、使用或另行转让本产品的权利,或出于基础临床前研究应用(包括但不限于畸胎瘤试验)以外的目的,由营利性主体或与其合作,将使用本产品制造的任何材料植入动物体内的权利。
购买者若不同意前述条款和条件,应保持产品完好,将其退还出售方以获退款。