技术资料
-
R. K. Johnson et al. (nov 2022) Scientific reports 12 1 19920Peripheral blood mononuclear cell phenotype and function are maintained after overnight shipping of whole blood.
Same day processing of biospecimens such as blood is not always feasible,which presents a challenge for research programs seeking to study a broad population or to characterize patients with rare diseases. Recruiting sites may not be equipped to process blood samples and variability in timing and technique employed to isolate peripheral blood mononuclear cells (PBMCs) at local sites may compromise reproducibility across patients. One solution is to send whole blood collected by routine phlebotomy via overnight courier to the testing site under ambient conditions. Determining the impact of shipping on subsequent leukocyte responses is a necessary prerequisite to any experimental analysis derived from transported samples. To this end,whole blood was collected from healthy control subjects and processed fresh or at 6,24 and 48 h after collection and handling under modeled shipping conditions. At endpoint,whole blood was assessed via a complete blood count with differential and immunophenotyped using a standardized panel of antibodies [HLADR,CD66b,CD3,CD14,CD16]. PBMCs and neutrophils were isolated from whole blood and subjected to ex vivo stimulation with lipopolysaccharide and heat-killed Staphylococcus aureus. Stimulated release of cytokines and chemokines was assessed by cytometric bead array. RNA was also isolated from PBMCs to analyze transcriptional changes induced by shipping. The complete blood count with differential revealed that most parameters were maintained in shipped blood held for 24 h at ambient temperature. Immunophenotyping indicated preservation of cellular profiles at 24 h,although with broadening of some populations and a decrease in CD16 intensity on classical monocytes. At the transcriptional level,RNAseq analysis identified upregulation of a transcription factor module associated with inflammation in unstimulated PBMCs derived from whole blood shipped overnight. However,these changes were limited in both scale and number of impacted genes. Ex vivo stimulation of PBMCs further revealed preservation of functional responses in cells isolated from shipped blood held for 24 h at ambient temperature. However,neutrophil responses were largely abrogated by this time. By 48 h neither cell population responded within normal parameters. These findings indicate that robust immunophenotyping and PBMC stimulated response profiles are maintained in whole blood shipped overnight and processed within 24 h of collection,yielding results that are representative of those obtained from the sample immediately following venipuncture. This methodology is feasible for many patient recruitment sites to implement and allows for sophisticated immunological analysis of patient populations derived from large geographic areas. With regard to rare disease research,this meets a universal need to enroll patients in sufficient numbers for immunoprofiling and discovery of underlying pathogenic mechanisms. View Publication -
K. Ramji et al. (nov 2022) Scientific reports 12 1 19660Targeting arginase-1 exerts antitumor effects in multiple myeloma and mitigates bortezomib-induced cardiotoxicity.
Multiple myeloma (MM) remains an incurable malignancy of plasma cells despite constantly evolving therapeutic approaches including various types of immunotherapy. Increased arginase activity has been associated with potent suppression of T-cell immune responses in different types of cancer. Here,we investigated the role of arginase 1 (ARG1) in V$\kappa$*MYC model of MM in mice. ARG1 expression in myeloid cells correlated with tumor progression and was accompanied by a systemic drop in EY-arginine levels. In MM-bearing mice antigen-induced proliferation of adoptively transferred T-cells was strongly suppressed and T-cell proliferation was restored by pharmacological arginase inhibition. Progression of V$\kappa$*MYC tumors was significantly delayed in mice with myeloid-specific ARG1 deletion. Arginase inhibition effectively inhibited tumor progression although it failed to augment anti-myeloma effects of bortezomib. However,arginase inhibitor completely prevented development of bortezomib-induced cardiotoxicity in mice. Altogether,these findings indicate that arginase inhibitors could be further tested as a complementary strategy in multiple myeloma to mitigate adverse cardiac events without compromising antitumor efficacy of proteasome inhibitors. View Publication -
Y. Mo et al. (oct 2022) Immune network 22 5 e40Mesenchymal Stem Cells Attenuate Asthmatic Inflammation and Airway Remodeling by Modulating Macrophages/Monocytes in the IL-13-Overexpressing Mouse Model.
Mesenchymal stem cells (MSCs) are attractive alternatives to conventional anti-asthmatic drugs for severe asthma. Mechanisms underlying the anti-asthmatic effects of MSCs have not yet been elucidated. This study evaluated the anti-asthmatic effects of intravenously administered MSCs,focusing on macrophages and monocytes. Seven-week-old transgenic (Tg) mice with lung-specific overexpression of IL-13 were used to simulate chronic asthma. MSCs were intravenously administered four days before sampling. We examined changes in immune cell subpopulations,gene expression,and histological phenotypes. IL-13 Tg mice exhibited diverse features of chronic asthma,including severe type 2 inflammation,airway fibrosis,and mucus metaplasia. Intravenous administration of MSCs attenuated these asthmatic features just four days after a single treatment. MSC treatment significantly reduced SiglecF-CD11c-CD11b+ monocyte-derived macrophages (MoMs) and inhibited the polarization of MoMs into M2 macrophages,especially M2a and M2c. Furthermore,MSCs downregulated the excessive accumulation of Ly6c- monocytes in the lungs. While an intravenous adoptive transfer of Ly6c- monocytes promoted the infiltration of MoM and Th2 inflammation,that of MSC-exposed Ly6c- monocytes did not. Ex vivo Ly6c- MoMs upregulated M2-related genes,which were reduced by MSC treatment. Molecules secreted by Ly6c- MoMs from IL-13 Tg mice lungs upregulated the expression of fibrosis-related genes in fibroblasts,which were also suppressed by MSC treatment. In conclusion,intravenously administered MSCs attenuate asthma phenotypes of chronic asthma by modulating macrophages. Identifying M2 macrophage subtypes revealed that exposure to MSCs transforms the phenotype and function of macrophages. We suggest that Ly6c- monocytes could be a therapeutic target for asthma management. View Publication -
K. Yokoyama et al. ( 2022) Frontiers in immunology 13 1016914CEACAM 1, 3, 5 and 6 -positive classical monocytes correlate with interstitial lung disease in early systemic sclerosis.
BACKGROUND Systemic sclerosis (SSc) is a multiple-organ disease characterized by vascular damage,autoimmunity,and tissue fibrosis. Organ injuries such as interstitial lung diseases (ILD),resulting from inflammatory and fibrosis processes,lead to poor prognosis. Although autoantibodies are detected in the serum of patients with SSc,the mechanisms by which immune cells are involved in tissue inflammation and fibrosis is not fully understood. Recent studies have revealed carcinoembryonic antigen related cell adhesion molecule (CEACAM)-positive monocytes are involved in murine bleomycin-induced lung fibrosis. We investigated CEACAM-positive monocytes in patients with SSc to clarify the role of monocytes in the pathogenesis of SSc. METHODS The proportion of of CEACAM-positive classical monocytes in healthy controls (HCs) and patients with rheumatoid arthritis (RA) and SSc was evaluated using flow cytometry. The correlation between the proportion of CEACAM-positive monocytes and clinical parameters was analyzed in patients with SSc. Gene expression microarrays were performed in CEACAM-positive and negative monocytes in patients with SSc. Infiltration of CEACAM-positive monocytes into scleroderma skin was evaluated by immunohistochemical staining. RESULTS The proportion of CEACAM-positive classical monocytes was increased in patients with early SSc within 2 years after diagnosis,which positively correlated with ESR,serum IgG,and serum KL-6 and negatively correlated with %forced vital capacity. The percentage of CEACAM-positive monocytes decreased after immunosuppressive therapy. CEACAM6-positive cells among classical monocytes were significantly increased in patients with SSc compared with HCs and patients with rheumatoid arthritis. SSc serum induced CEACAM6 expression on monocytes from HCs. Functionally,CEACAM-positive monocytes produced higher levels of TNF-$\alpha$ and IL-1$\beta$ compared to CEACAM-negative cells and showed activation of the NF-$\kappa$B pathway. Furthermore,CEACAM6-positive monocytes infiltrated the dermis of SSc. CONCLUSIONS CEACAM-positive monocytes showed inflammatory phenotypes and may be involved in the tissue inflammation and fibrosis in early SSc. CEACAM-positive monocytes may be one of biomarkers to detect patients with progressive ILD,requiring therapeutic intervention. View Publication -
A. Mart\'inez-Sabadell et al. (dec 2022) STAR protocols 3 4 101712Protocol to generate a patient derived xenograft model of acquired resistance to immunotherapy in humanized mice.
Immunotherapy has revolutionized cancer treatment,but preclinical models are required to understand immunotherapy resistance mechanisms underlying patient relapse. This protocol describes how to generate an acquired resistance humanized in vivo model to immunotherapies in patient-derived xenografts (PDX). We detail steps to inject human CD34+ cells into NSG mice,followed by generation of immunoresistant PDX in humanized mice. This approach recapitulates the human immune system,allowing investigators to generate preclinical resistance models to different immunotherapies for identifying the resistant phenotype. For complete details on the use and execution of this protocol,please refer to Mart{\'{i}}nez-Sabadell et al.,2022 and Arenas et al. (2021). View Publication -
J. D. Doyle et al. (oct 2022) NPJ vaccines 7 1 129Immune correlates of protection following Rift Valley fever virus vaccination.
Rift Valley fever virus (RVFV) is a hemorrhagic fever virus with the potential for significant economic and public health impact. Vaccination with an attenuated strain,DelNSsRVFV,provides protection from an otherwise lethal RVFV challenge,but mechanistic determinants of protection are undefined. In this study,a murine model was used to assess the contributions of humoral and cellular immunity to DelNSsRVFV-mediated protection. Vaccinated mice depleted of T cells were protected against subsequent challenge,and passive transfer of immune serum from vaccinated animals to na{\{i}}ve animals was also protective demonstrating that T cells were dispensable in the presence of humoral immunity and that humoral immunity alone was sufficient. Animals depleted of B cells and then vaccinated were protected against challenge. Total splenocytes but not T cells alone B cells alone or B??+??T cells harvested from vaccinated animals and then transferred to na{\"{i}}ve animals were sufficient to confer protection suggesting that multiple cellular interactions were required for effective cellular immunity. Together these data indicate that humoral immunity is sufficient to confer vaccine-mediated protection and suggests that cellular immunity plays a role in protection that requires the interaction of various cellular components." View Publication -
T. Manolakou et al. (oct 2022) Science advances 8 43 eabo5840ATR-mediated DNA damage responses underlie aberrant B cell activity in systemic lupus erythematosus.
B cells orchestrate autoimmune responses in patients with systemic lupus erythematosus (SLE),but broad-based B cell-directed therapies show only modest efficacy while blunting humoral immune responses to vaccines and inducing immunosuppression. Development of more effective therapies targeting pathogenic clones is a currently unmet need. Here,we demonstrate enhanced activation of the ATR/Chk1 pathway of the DNA damage response (DDR) in B cells of patients with active SLE disease. Treatment of B cells with type I IFN,a key driver of immunity in SLE,induced expression of ATR via binding of interferon regulatory factor 1 to its gene promoter. Pharmacologic targeting of ATR in B cells,via a specific inhibitor (VE-822),attenuated their immunogenic profile,including proinflammatory cytokine secretion,plasmablast formation,and antibody production. Together,these findings identify the ATR-mediated DDR axis as the orchestrator of the type I IFN-mediated B cell responses in SLE and as a potential novel therapeutic target. View Publication -
L. F. Zhang et al. (dec 2022) mBio 13 6 e0273322The Vi Capsular Polysaccharide of Salmonella Typhi Promotes Macrophage Phagocytosis by Binding the Human C-Type Lectin DC-SIGN.
Capsular polysaccharides are common virulence factors of extracellular,but not intracellular bacterial pathogens,due to the antiphagocytic properties of these surface structures. It is therefore paradoxical that Salmonella enterica subspecies enterica serovar Typhi,an intracellular pathogen,synthesizes a virulence-associated (Vi) capsule,which exhibits antiphagocytic properties. Here,we show that the Vi capsular polysaccharide has different functions when S. Typhi interacts with distinct subsets of host phagocytes. The Vi capsular polysaccharide allowed S. Typhi to selectively evade phagocytosis by human neutrophils while promoting human macrophage phagocytosis. A screen of C-type lectin receptors identified human DC-SIGN as the receptor involved in macrophage binding and phagocytosis of capsulated S. Typhi. Consistent with the anti-inflammatory activity of DC-SIGN,purified Vi capsular polysaccharide reduced inflammatory responses in macrophages. These data suggest that binding of the human C-type lectin receptor DC-SIGN by the Vi capsular polysaccharide contributes to the pathogenesis of typhoid fever. IMPORTANCE Salmonella enterica subspecies enterica serovar Typhi is the causative agent of typhoid fever. The recent emergence of S. Typhi strains which are resistant to antibiotic therapy highlights the importance of vaccination in managing typhoid fever. The virulence-associated (Vi) capsular polysaccharide is an effective vaccine against typhoid fever,but the role the capsule plays during pathogenesis remains incompletely understood. Here,we identify the human C-type lectin receptor DC-SIGN as the receptor for the Vi capsular polysaccharide. Binding of capsulated S. Typhi to DC-SIGN resulted in phagocytosis of the pathogen by macrophages and induction of an anti-inflammatory cytokine response. Thus,the interaction of the Vi capsular polysaccharide with human DC-SIGN contributes to the pathogenesis of typhoid fever and should be further investigated in the context of vaccine development. View Publication -
C. M. Sungur et al. (dec 2022) The Journal of clinical investigation 132 24Human NK cells confer protection against HIV-1 infection in humanized mice.
The role of NK cells against HIV-1 infections remains to be elucidated in vivo. While humanized mouse models potentially could be used to directly evaluate human NK cell responses during HIV-1 infection,improved functional development of human NK cells in these hosts is needed. Here,we report the humanized MISTRG-6-15 mouse model,in which NK cells were quick to expand and exhibit degranulation,cytotoxicity,and proinflammatory cytokine production in nonlymphoid organs upon HIV-1 infection but had reduced functionality in lymphoid organs. Although HIV-1 infection induced functional impairment of NK cells,antiretroviral therapy reinvigorated NK cells in response to HIV-1 rebound after analytic treatment interruption. Moreover,a broadly neutralizing antibody,PGT121,enhanced NK cell function in vivo,consistent with antibody-dependent cellular cytotoxicity. Monoclonal antibody depletion of NK cells resulted in higher viral loads in multiple nonlymphoid organs. Overall,our results in humanized MISTRG-6-15 mice demonstrated that NK cells provided direct anti-HIV-1 responses in vivo but were limited in their responses in lymphoid organs. View Publication -
D. Gonz\'alez-Serna et al. (jun 2023) Arthritis & rheumatology (Hoboken,N.J.) 75 6 1007--1020Identification of Mechanisms by Which Genetic Susceptibility Loci Influence Systemic Sclerosis Risk Using Functional Genomics in Primary T Cells and Monocytes.
OBJECTIVE Systemic sclerosis (SSc) is a complex autoimmune disease with a strong genetic component. However,most of the genes associated with the disease are still unknown because associated variants affect mostly noncoding intergenic elements of the genome. We used functional genomics to translate the genetic findings into a better understanding of the disease. METHODS Promoter capture Hi-C and RNA-sequencing experiments were performed in CD4+ T cells and CD14+ monocytes from 10 SSc patients and 5 healthy controls to link SSc-associated variants with their target genes,followed by differential expression and differential interaction analyses between cell types. RESULTS We linked SSc-associated loci to 39 new potential target genes and confirmed 7 previously known SSc-associated genes. We highlight novel causal genes,such as CXCR5,as the most probable candidate gene for the DDX6 locus. Some previously known SSc-associated genes,such as IRF8,STAT4,and CD247,showed cell type-specific interactions. We also identified 15 potential drug targets already in use in other similar immune-mediated diseases that could be repurposed for SSc treatment. Furthermore,we observed that interactions were directly correlated with the expression of important genes implicated in cell type-specific pathways and found evidence that chromatin conformation is associated with genotype. CONCLUSION Our study revealed potential causal genes for SSc-associated loci,some of them acting in a cell type-specific manner,suggesting novel biologic mechanisms that might mediate SSc pathogenesis. View Publication -
J. R. Giles et al. (nov 2022) Nature immunology 23 11 1600--1613Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics.
Na{\{i}}ve CD8+ T cells can differentiate into effector (Teff) memory (Tmem) or exhausted (Tex) T cells. These developmental pathways are associated with distinct transcriptional and epigenetic changes that endow cells with different functional capacities and therefore therapeutic potential. The molecular circuitry underlying these developmental trajectories and the extent of heterogeneity within Teff Tmem and Tex populations remain poorly understood. Here we used the lymphocytic choriomeningitis virus model of acute-resolving and chronic infection to address these gaps by applying longitudinal single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses. These analyses uncovered new subsets including a subpopulation of Tex cells expressing natural killer cell-associated genes that is dependent on the transcription factor Zeb2 as well as multiple distinct TCF-1+ stem/progenitor-like subsets in acute and chronic infection. These data also revealed insights into the reshaping of Tex subsets following programmed death 1 (PD-1) pathway blockade and identified a key role for the cell stress regulator Btg1 in establishing the Tex population. Finally these results highlighted how the same biological circuits such as cytotoxicity or stem/progenitor pathways can be used by CD8+ T cell subsets with highly divergent underlying chromatin landscapes generated during different infections." View Publication -
J. Abraham-Miranda et al. ( 2022) Frontiers in immunology 13 1007042CAR-T manufactured from frozen PBMC yield efficient function with prolonged in vitro production.
Chimeric antigen receptor (CAR)-T cells are engineered to identify and eliminate cells expressing a target antigen. Current manufacturing protocols vary between commercial CAR-T cell products warranting an assessment of these methods to determine which approach optimally balances successful manufacturing capacity and product efficacy. One difference between commercial product manufacturing methods is whether T cell engineering begins with fresh (unfrozen) patient cells or cells that have been cryopreserved prior to manufacture. Starting with frozen PBMC material allows for greater manufacturing flexibility,and the possibility of collecting and storing blood from patients prior to multiple lines of therapy. We prospectively analyzed if second generation anti-CD19 CAR-T cells with either CD28 or 4-1BB co-stimulatory domains have different phenotype or function when prepared side-by-side using fresh or cryopreserved PBMCs. We found that cryopreserved PBMC starting material is associated with slower CAR-T cell expansion during manufacture but does not affect phenotype. We also demonstrate that CAR-T cell activation,cytokine production and in vitro anti-tumor cytotoxicity were not different when CAR-T cells were manufactured from fresh or cryopreserved PBMC. As CAR-T cell therapy expands globally,the need for greater flexibility around the timing of manufacture will continue to grow. This study helps support the concept that cryopreservation of PBMCs could be the solution to these issues without compromising the quality of the final CAR-T product. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号