H. Li et al. (sep 2019)
The Journal of steroid biochemistry and molecular biology 195 105485
Glucocorticoid resistance of allogeneic T cells alters the gene expression profile in the inflamed small intestine of mice suffering from acute graft-versus-host disease.
Glucocorticoids (GCs) play an important role in controlling acute graft-versus-host disease (aGvHD),a frequent complication of allogeneic hematopoietic stem cell transplantation. The anti-inflammatory activity of GCs is mainly ascribed to the modulation of T cells and macrophages,for which reason a genetically induced GC resistance of either of these cell types causes aggravated aGvHD. Since only a few genes are currently known that are differentially regulated under these conditions,we analyzed the expression of 54 candidate genes in the inflamed small intestine of mice suffering from aGvHD when either allogeneic T cells or host myeloid cells were GC resistant using a microfluidic dynamic array platform for high-throughput quantitative PCR. The majority of genes categorized as cytokines (e.g. Il2,Il6),chemokines (e.g. Ccl2,Cxcl1),cell surface receptors (e.g. Fasl,Ctla4) and intracellular molecules (e.g. Dusp1,Arg1) were upregulated in mice transplanted with GC resistant allogeneic T cells. Moreover,the expression of several genes linked to energy metabolism (e.g. Glut1) was altered. Surprisingly,mice harboring GC resistant myeloid cells showed almost no changes in gene expression despite their fatal disease course after aGvHD induction. To identify additional genes in the inflamed small intestine that were affected by a GC resistance of allogeneic T cells,we performed an RNAseq analysis,which uncovered more than 500 differentially expressed transcripts (e.g. Cxcr6,Glut3,Otc,Aoc1,Il1r1,Sphk1) that were enriched for biological processes associated with inflammation and tissue disassembly. The changes in gene expression could be confirmed during full-blown disease but hardly any of them in the preclinical phase using high-throughput quantitative PCR. Further analysis of some of these genes revealed a highly selective expression pattern in T cells,intestinal epithelial cells and macrophages,which correlated with their regulation during disease progression. Collectively,we identified an altered gene expression profile caused by GC resistance of transplanted allogeneic T cells,which could help to define new targets for aGvHD therapy.
View Publication
文献
C. Lee et al. (dec 2019)
Pediatric surgery international 35 12 1395--1401
Protective effects of vitamin D against injury in intestinal epithelium.
BACKGROUND Vitamin D deficiency is associated with intestinal barrier dysfunction,which contributes to pathogenesis of acute intestinal injury in children. We aim to investigate the effects of vitamin D on intestinal injury in intestinal epithelial cells and organoids. METHODS Lipopolysaccharide (LPS) was used to induce injury in intestinal epithelial cells (IEC-18) and organoids,and the effect of vitamin D was assessed. Cell viability was measured and inflammation cytokines TNF$\alpha$ and IL-8 were quantified. FITC-dextran 4 kDa (FD4) permeability was measured using Transwell while tight junction markers were assessed by immunofluorescence staining in IEC-18 and intestinal organoids. Data were compared using one-way ANOVA with Bonferroni post-test. RESULTS IEC-18 viability was decreased by LPS treatment,but was prevented by vitamin D. The upregulation of inflammation was inhibited by vitamin D,which also decreased epithelium permeability. Vitamin D restored tight junction ZO-1 and claudin 2. In addition,vitamin D decreased TNF$\alpha$ expression and prevented the disruption of ZO-1 in injured organoids. CONCLUSIONS Vitamin D rescued epithelial barrier function by improving permeability and restoring tight junctions,leading to decrease inflammation. This study confirms the protective effects of vitamin D,which could be used as a treatment strategy for infants at risk of developing intestinal injury.
View Publication
文献
D. I. Kotov and M. K. Jenkins (jun 2019)
Current protocols in immunology 125 1 e75
Peptide:MHCII Tetramer-Based Cell Enrichment for the Study of Epitope-Specific CD4+ T Cells.
Epitope-specific CD4+ T cells can be labeled in complex cell mixtures from secondary lymphoid organs with fluorophore-labeled peptide:major histocompatibility complex class II (p:MHCII) tetramers and then detected by flow cytometry. Magnetic enrichment of tetramer-bound cells before flow cytometry increases the sensitivity of detection to the point where epitope-specific cells can be studied even when very rare at early and late times after the host has been exposed to the epitope. This method is very useful for studying polyclonal epitope-specific CD4+ T cells under physiological conditions. {\textcopyright} 2019 by John Wiley {\&} Sons,Inc.
View Publication
文献
B. H. Koehn et al. (nov 2019)
Blood 134 19 1670--1682
Danger-associated extracellular ATP counters MDSC therapeutic efficacy in acute GVHD.
Myeloid-derived suppressor cells (MDSCs) can subdue inflammation. In mice with acute graft-versus-host disease (GVHD),donor MDSC infusion enhances survival that is only partial and transient because of MDSC inflammasome activation early posttransfer,resulting in differentiation and loss of suppressor function. Here we demonstrate that conditioning regimen-induced adenosine triphosphate (ATP) release is a primary driver of MDSC dysfunction through ATP receptor (P2x7R) engagement and NLR pyrin family domain 3 (NLRP3) inflammasome activation. P2x7R or NLRP3 knockout (KO) donor MDSCs provided significantly higher survival than wild-type (WT) MDSCs. Although in vivo pharmacologic targeting of NLRP3 or P2x7R promoted recipient survival,indicating in vivo biologic effects,no synergistic survival advantage was seen when combined with MDSCs. Because activated inflammasomes release mature interleukin-1$\beta$ (IL-1$\beta$),we expected that IL-1$\beta$ KO donor MDSCs would be superior in subverting GVHD,but such MDSCs proved inferior relative to WT. IL-1$\beta$ release and IL-1 receptor expression was required for optimal MDSC function,and exogenous IL-1$\beta$ added to suppression assays that included MDSCs increased suppressor potency. These data indicate that prolonged systemic NLRP3 inflammasome inhibition and decreased IL-1$\beta$ could diminish survival in GVHD. However,loss of inflammasome activation and IL-1$\beta$ release restricted to MDSCs rather than systemic inhibition allowed non-MDSC IL-1$\beta$ signaling,improving survival. Extracellular ATP catalysis with peritransplant apyrase administered into the peritoneum,the ATP release site,synergized with WT MDSCs,as did regulatory T-cell infusion,which we showed reduced but did not eliminate MDSC inflammasome activation,as assessed with a novel inflammasome reporter strain. These findings will inform future clinical using MDSCs to decrease alloresponses in inflammatory environments.
View Publication
文献
S. Kimura et al. (apr 2019)
The Journal of experimental medicine 216 4 831--846
Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice.
Microfold (M) cells residing in the follicle-associated epithelium (FAE) of the gut-associated lymphoid tissue are specialized for antigen uptake to initiate mucosal immune responses. The molecular machinery and biological significance of M cell differentiation,however,remain to be fully elucidated. Here,we demonstrate that Sox8,a member of the SRY-related HMG box transcription factor family,is specifically expressed by M cells in the intestinal epithelium. The expression of Sox8 requires activation of RANKL-RelB signaling. Chromatin immunoprecipitation and luciferase assays revealed that Sox8 directly binds the promoter region of Gp2 to increase Gp2 expression,which is the hallmark of functionally mature M cells. Furthermore,genetic deletion of Sox8 causes a marked decrease in the number of mature M cells,resulting in reduced antigen uptake in Peyer's patches. Consequently,juvenile Sox8-deficient mice showed attenuated germinal center reactions and antigen-specific IgA responses. These findings indicate that Sox8 plays an essential role in the development of M cells to establish mucosal immune responses.
View Publication
文献
Y. Jin et al. ( 2018)
American journal of physiology. Gastrointestinal and liver physiology 315 6 G966--G979
Knockout of ClC-2 reveals critical functions of adherens junctions in colonic homeostasis and tumorigenicity.
Adherens junctions (AJs),together with tight junctions (TJs),form an apical junctional complex that regulates intestinal epithelial cell-to-cell adherence and barrier homeostasis. Within the AJ,membrane-bound E-cadherin binds $\beta$-catenin,which functions as an essential intracellular signaling molecule. We have previously identified a novel protein in the region of the apical junction complex,chloride channel protein-2 (ClC-2),that we have used to study TJ regulation. In this study,we investigated the possible effects of ClC-2 on the regulation of AJs in intestinal mucosal epithelial homeostasis and tumorigenicity. Mucosal homeostasis and junctional proteins were examined in wild-type (WT) and ClC-2 knockout (KO) mice as well as associated colonoids. Tumorigenicity and AJ-associated signaling were evaluated in a murine colitis-associated tumor model and in a colorectal cancer cell line (HT-29). Colonic tissues from ClC-2 KO mice had altered ultrastructural morphology of intercellular junctions with reduced colonocyte differentiation,whereas jejunal tissues had minimal changes. Colonic crypts from ClC-2 KO mice had significantly higher numbers of less-differentiated forms of colonoids compared with WT. Furthermore,the absence of ClC-2 resulted in redistribution of AJ proteins and increased $\beta$-catenin activity. Downregulation of ClC-2 in colorectal cells resulted in significant increases in proliferation associated with disruption of AJs. Colitis-associated tumors in ClC-2 KO mice were significantly increased,associated with $\beta$-catenin transcription factor activation. The absence of ClC-2 results in less differentiated colonic crypts and increased tumorigenicity associated with colitis via dysregulation of AJ proteins and activation of $\beta$-catenin-associated signaling. NEW {\&} NOTEWORTHY Disruption of adherens junctions in the absence of chloride channel protein-2 revealed critical functions of these junctional structures,including maintenance of colonic homeostasis and differentiation as well as driving tumorigenicity by regulating $\beta$-catenin signaling.
View Publication
文献
G. Huelsz-Prince et al. ( 2019)
Biomolecules 9 3
Effect of Antifreeze Glycoproteins on Organoid Survival during and after Hypothermic Storage.
We study the effect of antifreeze glycoproteins (AFGPs) on the survival of organoids under hypothermic conditions. We find that the survival of organoids in cold conditions depends on their developmental stage. Mature organoids die within 24 h when being stored at 4 °C,while cystic organoids can survive up to 48 h. We find that in the presence of AFGPs,the organoid survival is prolonged up to 72 h,irrespective of their developmental stage. Fluorescence microscopy experiments reveal that the AFGPs predominately localize at the cell surface and cover the cell membranes. Our findings support a mechanism in which the positive effect of AFGPs on cell survival during hypothermic storage involves the direct interaction of AFGPs with the cell membrane. Our research highlights organoids as an attractive multicellular model system for studying the action of AFGPs that bridges the gap between single-cell and whole-organ studies.
View Publication
文献
A. J. Hoogendijk et al. (nov 2019)
Cell reports 29 8 2505--2519.e4
Dynamic Transcriptome-Proteome Correlation Networks Reveal Human Myeloid Differentiation and Neutrophil-Specific Programming.
Human neutrophilic granulocytes form the largest pool of innate immune cells for host defense against bacterial and fungal pathogens. The dynamic changes that accompany the metamorphosis from a proliferating myeloid progenitor cell in the bone marrow into a mature non-dividing polymorphonuclear blood cell have remained poorly defined. Using mass spectrometry-based quantitative proteomics combined with transcriptomic data,we report on the dynamic changes of five developmental stages in the bone marrow and blood. Integration of transcriptomes and proteome unveils highly dynamic and differential interactions between RNA and protein kinetics during human neutrophil development,which can be linked to functional maturation of typical end-stage blood neutrophil killing activities.
View Publication
文献
M. R. Hildebrandt et al. (dec 2019)
Stem cell reports 13 6 1126--1141
Precision Health Resource of Control iPSC Lines for Versatile Multilineage Differentiation.
Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC). Multilineage-directed differentiation efficiently produced functional cortical neurons,cardiomyocytes and hepatocytes. Pilot users demonstrated versatility by generating kidney organoids,T lymphocytes,and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole-genome sequencing-based annotation of PGPC lines revealed on average 20 coding variants. Importantly,nearly all annotated PGPC and HipSci lines harbored at least one pre-existing or acquired variant with cardiac,neurological,or other disease associations. Overall,PGPC lines were efficiently differentiated by multiple users into cells from six tissues for disease modeling,and variant-preferred healthy control lines were identified for specific disease settings.
View Publication
文献
M. Harmati et al. (oct 2019)
Scientific reports 9 1 15329
Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells.
Exosomes are small extracellular vesicles (sEVs),playing a crucial role in the intercellular communication in physiological as well as pathological processes. Here,we aimed to study whether the melanoma-derived sEV-mediated communication could adapt to microenvironmental stresses. We compared B16F1 cell-derived sEVs released under normal and stress conditions,including cytostatic,heat and oxidative stress. The miRNome and proteome showed substantial differences across the sEV groups and bioinformatics analysis of the obtained data by the Ingenuity Pathway Analysis also revealed significant functional differences. The in silico predicted functional alterations of sEVs were validated by in vitro assays. For instance,melanoma-derived sEVs elicited by oxidative stress increased Ki-67 expression of mesenchymal stem cells (MSCs); cytostatic stress-resulted sEVs facilitated melanoma cell migration; all sEV groups supported microtissue generation of MSC-B16F1 co-cultures in a 3D tumour matrix model. Based on this study,we concluded that (i) molecular patterns of tumour-derived sEVs,dictated by the microenvironmental conditions,resulted in specific response patterns in the recipient cells; (ii) in silico analyses could be useful tools to predict different stress responses; (iii) alteration of the sEV-mediated communication of tumour cells might be a therapy-induced host response,with a potential influence on treatment efficacy.
View Publication
文献
N. Gomez-Ospina et al. ( 2019)
Nature communications 10 1 4045
Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I.
Lysosomal enzyme deficiencies comprise a large group of genetic disorders that generally lack effective treatments. A potential treatment approach is to engineer the patient's own hematopoietic system to express high levels of the deficient enzyme,thereby correcting the biochemical defect and halting disease progression. Here,we present an efficient ex vivo genome editing approach using CRISPR-Cas9 that targets the lysosomal enzyme iduronidase to the CCR5 safe harbor locus in human CD34+ hematopoietic stem and progenitor cells. The modified cells secrete supra-endogenous enzyme levels,maintain long-term repopulation and multi-lineage differentiation potential,and can improve biochemical and phenotypic abnormalities in an immunocompromised mouse model of Mucopolysaccharidosis type I. These studies provide support for the development of genome-edited CD34+ hematopoietic stem and progenitor cells as a potential treatment for Mucopolysaccharidosis type I. The safe harbor approach constitutes a flexible platform for the expression of lysosomal enzymes making it applicable to other lysosomal storage disorders.
View Publication
文献
A. E. Gilchrist et al. (oct 2019)
Advanced healthcare materials 8 20 e1900751
Soluble Signals and Remodeling in a Synthetic Gelatin-Based Hematopoietic Stem Cell Niche.
Hematopoietic stem cells (HSCs) reside in the bone marrow within niches that provide microenvironmental signals in the form of biophysical cues,bound and diffusible biomolecules,and heterotypic cell-cell interactions that influence HSC fate decisions. This study seeks to inform the development of a synthetic culture platform that promotes ex vivo HSC expansion without exhaustion. A library of methacrylamide-functionalized gelatin (GelMA) hydrogels is used to explore remodeling and crosstalk from mesenchymal stromal cells (MSCs) on the expansion and quiescence of murine HSCs. The use of a degradable GelMA hydrogel enables MSC-mediated remodeling,yielding dynamic shifts in the matrix environment over time. An initially low-diffusivity hydrogel for co-culture of hematopoietic stem and progenitor cells to MSCs facilitates maintenance of an early progenitor cell population over 7 days. Excitingly,this platform promotes retention of a quiescent HSC population compared to HSC monocultures. These studies reveal MSC-density-dependent upregulation of MMP-9 and changes in hydrogel mechanical properties ($\Delta$E = 2.61 ± 0.72) suggesting MSC-mediated matrix remodeling may contribute to a dynamic culture environment. Herein,a 3D hydrogel is reported for ex vivo HSC culture,in which HSC expansion and quiescence is sensitive to hydrogel properties,MSC co-culture,and MSC-mediated hydrogel remodeling.
View Publication