技术资料
-
文献(Dec 2024) Stem Cell Research & Therapy 15 15Matrix-free human lung organoids derived from induced pluripotent stem cells to model lung injury
BackgroundOrganoids,as near-physiological 3D culture systems,offer new opportunities to study the pathogenesis of various organs in mimicking the cellular complexity and functionality of human organs.MethodHere we used a quite simple and very practicable method to successfully generate induced pluripotent stem cell (iPSC)-derived human lung organoids (LuOrg) in a matrix-free manner as an alternative to the widely used preclinical mouse models in order to investigate normal lung damage in detail and as close as possible to the patient. We performed detailed morphological and molecular analyses,including bulk and single cell RNA sequencing,of generated lung organoids and evaluated the quality and robustness of our model as a potential in vitro platform for lung diseases,namely radiation-induced lung injury.ResultsA matrix-free method for differentiation of iPSCs can be used to obtain lung organoids that morphologically reflect the target tissue of the human lung very well,especially with regard to the cellular composition. The different cellular fates were investigated following the genotoxic stress induced by radiation and revealed further insights in the radiation-sensitivity of the different lung cells. Finally,we provide cellular gene sets found to be induced in the different lung organoid cellular subsets after irradiation,which could be used as additional RT response and particularly senescence gene sets in future studies.ConclusionBy establishing these free-floating LuOrgs for the investigation of cancer therapeutic approaches as a new and patient-oriented in vitro platform particularly in experimental radiooncology,not only a reduction in the number of experimental animals,but also an adequately and meaningfully replacement of corresponding animal experiments can be achieved.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-04106-3. Graphical abstract Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-04106-3. View Publication -
文献(Jun 2025) Cells 14 12Transcriptomic Profiling of iPS Cell-Derived Hepatocyte-like Cells Reveals Their Close Similarity to Primary Liver Hepatocytes
Human-induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) have been shown to be useful for the development of cell-based regenerative strategies and for modelling drug discovery. However,stem cell-derived HLCs are not identical in nature to primary human hepatocytes (PHHs),which could affect the cell phenotype and,potentially,model reliability. Therefore,we employed the in-depth gene expression profiling of HLCs and other important and relevant cell types,which led to the identification of clear similarities and differences between them at the transcriptional level. Through gene set enrichment analysis,we identified that genes that are critical for immune signalling pathways become downregulated upon HLC differentiation. Our analysis also found that TAV.HLCs exhibit a mild gene signature characteristic of acute lymphoblastic leukaemia,but not other selected cancers. Importantly,HLCs present significant similarity to PHHs,making them genuinely valuable for modelling human liver biology in vitro and for the development of prototype cell-based therapies for pre-clinical testing. View Publication -
文献(Apr 2025) Cellular and Molecular Life Sciences: CMLS 82 1Increased thermal stability of FGF10 leads to ectopic signaling during development
Fibroblast growth factors (FGFs) control organ morphogenesis during development as well as tissue homeostasis and repair in the adult organism. Despite their importance,many mechanisms that regulate FGF function are still poorly understood. Interestingly,the thermodynamic stability of 22 mammalian FGFs varies widely,with some FGFs remaining stable at body temperature for more than 24 h,while others lose their activity within minutes. How thermodynamic stability contributes to the function of FGFs during development remains unknown. Here we show that FGF10,an important limb and lung morphogen,exists as an intrinsically unstable protein that is prone to unfolding and is rapidly inactivated at 37?°C. Using rationally driven directed mutagenesis,we have developed several highly stable (STAB) FGF10 variants with a melting temperature of over 19?°C more than that of wildtype FGF10. In cellular assays in vitro,the FGF10-STABs did not differ from wildtype FGF10 in terms of binding to FGF receptors,activation of downstream FGF receptor signaling in cells,and induction of gene expression. In mouse embryonal lung explants,FGF10-STABs,but not wildtype FGF10,suppressed branching,resulting in increased alveolarization and expansion of epithelial tissue. Similarly,FGF10-STAB1,but not FGF10 wildtype,inhibited the growth of mouse embryonic tibias and markedly altered limb morphogenesis when implanted into chicken limb buds,collectively demonstrating that thermal instability should be considered an important regulator of FGF function that prevents ectopic signaling. Furthermore,we show enhanced differentiation of human iPSC-derived lung organoids and improved regeneration in ex vivo lung injury models mediated by FGF10-STABs,suggesting an application in cell therapy.Supplementary InformationThe online version contains supplementary material available at 10.1007/s00018-025-05681-1. View Publication -
文献(Feb 2024) Frontiers in Neuroscience 18 321ra5EZH2 inhibition reactivates epigenetically silenced
Fragile X Syndrome (FXS) is a neurological disorder caused by epigenetic silencing of the FMR1 gene. Reactivation of FMR1 is a potential therapeutic approach for FXS that would correct the root cause of the disease. Here,using a candidate-based shRNA screen,we identify nine epigenetic repressors that promote silencing of FMR1 in FXS cells (called FMR1 Silencing Factors,or FMR1- SFs). Inhibition of FMR1-SFs with shRNAs or small molecules reactivates FMR1 in cultured undifferentiated induced pluripotent stem cells,neural progenitor cells (NPCs) and post-mitotic neurons derived from FXS patients. One of the FMR1-SFs is the histone methyltransferase EZH2,for which an FDA-approved small molecule inhibitor,EPZ6438 (also known as tazemetostat),is available. We show that EPZ6438 substantially corrects the characteristic molecular and electrophysiological abnormalities of cultured FXS neurons. Unfortunately,EZH2 inhibitors do not efficiently cross the blood-brain barrier,limiting their therapeutic use for FXS. Recently,antisense oligonucleotide (ASO)-based approaches have been developed as effective treatment options for certain central nervous system disorders. We therefore derived efficacious ASOs targeting EZH2 and demonstrate that they reactivate FMR1 expression and correct molecular and electrophysiological abnormalities in cultured FXS neurons,and reactivate FMR1 expression in human FXS NPCs engrafted within the brains of mice. Collectively,our results establish EZH2 inhibition in general,and EZH2 ASOs in particular,as a therapeutic approach for FXS. View Publication -
文献(Feb 2025) Nature Communications 16Bioprinting of bespoke islet-specific niches to promote maturation of stem cell-derived islets
Pancreatic islets are densely packed cellular aggregates containing various hormonal cell types essential for blood glucose regulation. Interactions among these cells markedly affect the glucoregulatory functions of islets along with the surrounding niche and pancreatic tissue-specific geometrical organization. However,stem cell (SC)-derived islets generated in vitro often lack the three-dimensional extracellular microenvironment and peri-vasculature,which leads to the immaturity of SC-derived islets,reducing their ability to detect glucose fluctuations and insulin release. Here,we bioengineer the in vivo-like pancreatic niches by optimizing the combination of pancreatic tissue-specific extracellular matrix and basement membrane proteins and utilizing bioprinting-based geometrical guidance to recreate the spatial pattern of islet peripheries. The bioprinted islet-specific niche promotes coordinated interactions between islets and vasculature,supporting structural and functional features resembling native islets. Our strategy not only improves SC-derived islet functionality but also offers significant potential for advancing research on islet development,maturation,and diabetic disease modeling,with future implications for translational applications. The glucoregulatory functions of pancreatic islets are affected by their surrounding niche and spatial organization. Here,bioengineered stem-cell derived islet niches use bioprinting-based geometrical guidance to promote islet maturation for improved functionality and diabetes research. View Publication -
文献(Apr 2025) Scientific Reports 15 Suppl 3Genome editing in spinocerebellar ataxia type 3 cells improves Golgi apparatus structure
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disease caused by repeat expansion of the CAG trinucleotide within exon 10 of the ATXN3 gene. This mutation results in the production of an abnormal ataxin-3 protein containing an extended polyglutamine tract,referred to as mutant ataxin-3. In this study,we investigated the therapeutic potential of CRISPR/Cas9-mediated genome editing for SCA3. First,we designed a specific single-guide RNA targeting the ATXN3 gene and constructed the corresponding targeting vector. Induced pluripotent stem cells (iPSCs) derived from a SCA3 patient were then electroporated with the CRISPR/Cas9 components. Positive clones were screened and validated by PCR and Sanger sequencing to obtain genome-editing iPSCs (GE-iPSCs). Subsequently,the pluripotency of GE-iPSCs was confirmed,and the effects of genome editing on mutant ataxin-3 protein expression and Golgi apparatus morphology were assessed using Western blotting and immunofluorescence analyses. Our results demonstrated that targeted insertion of polyadenylation signals (PAS) upstream of the abnormal CAG repeats effectively suppressed the production of mutant ataxin-3. This intervention also reduced the formation of neuronal nuclear inclusions in differentiated neurons,restored the structural integrity of the Golgi apparatus (which exhibited a loose and enlarged morphology in SCA3 cells),and increased the expression levels of Golgi structural proteins (GM130 and GORASP2). In conclusion,our findings indicate that the targeted insertion of PAS upstream of the abnormal CAG repeats in the ATXN3 gene represents a promising therapeutic strategy for SCA3 through genome editing.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-93369-8. View Publication -
文献(Oct 2024) bioRxiv 379Combinatorial effector targeting (COMET) for transcriptional modulation and locus-specific biochemistry
SUMMARYUnderstanding how human gene expression is coordinately regulated by functional units of proteins across the genome remains a major biological goal. Here,we present COMET,a high-throughput screening platform for combinatorial effector targeting for the identification of transcriptional modulators. We generate libraries of combinatorial dCas9-based fusion proteins,containing two to six effector domains,allowing us to systematically investigate more than 110,000 combinations of effector proteins at endogenous human loci for their influence on transcription. Importantly,we keep full proteins or domains intact,maintaining catalytic cores and surfaces for protein-protein interactions. We observe more than 5800 significant hits that modulate transcription,we demonstrate cell type specific transcriptional modulation,and we further investigate epistatic relationships between our effector combinations. We validate unexpected combinations as synergistic or buffering,emphasizing COMET as both a method for transcriptional effector discovery,and as a functional genomics tool for identifying novel domain interactions and directing locus-specific biochemistry. View Publication -
文献(Aug 2024) Nature Communications 15Calibrated ribosome profiling assesses the dynamics of ribosomal flux on transcripts
Ribosome profiling,which is based on deep sequencing of ribosome footprints,has served as a powerful tool for elucidating the regulatory mechanism of protein synthesis. However,the current method has substantial issues: contamination by rRNAs and the lack of appropriate methods to measure ribosome numbers in transcripts. Here,we overcome these hurdles through the development of “Ribo-FilterOut”,which is based on the separation of footprints from ribosome subunits by ultrafiltration,and “Ribo-Calibration”,which relies on external spike-ins of stoichiometrically defined mRNA-ribosome complexes. A combination of these approaches estimates the number of ribosomes on a transcript,the translation initiation rate,and the overall number of translation events before its decay,all in a genome-wide manner. Moreover,our method reveals the allocation of ribosomes under heat shock stress,during aging,and across cell types. Our strategy of modified ribosome profiling measures kinetic and stoichiometric parameters of cellular translation across the transcriptome. Ribosome profiling faces issues with rRNA contamination and measurements of ribosome numbers on transcripts. Here,the authors develop Ribo-FilterOut and Ribo-Calibration,methods which can be used to estimate kinetic and stoichiometric parameters of translation under various conditions. View Publication -
文献(Jun 2025) Stem Cell Research & Therapy 16 5CHD7 regulates definitive endodermal and mesodermal development from human embryonic stem cells
BackgroundCHD7 encodes an ATP-dependent chromodomain helicase DNA binding protein; mutations in this gene lead to multiple developmental disorders,including CHARGE (Coloboma,Heart defects,Atresia of the choanae,Retardation of growth and development,Genital hypoplasia,and Ear anomalies) syndrome. How the mutations cause multiple defects remains largely unclear. Embryonic definitive endoderm (DE) generates the epithelial compartment of vital organs such as the thymus,liver,pancreas,and intestine.MethodsIn this study,we used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technique to delete the CHD7 gene in human embryonic stem cells (hESCs) to generate CHD7 homozygous mutant (CHD7?/?),heterozygous mutant (CHD7+/?),and control wild-type (CHD7+/+) cells. We then investigated the ability of the hESCs to develop into DE and the other two germ layers,mesoderm and ectoderm in vitro. We also compared global gene expression and chromatin accessibility among the hESC-DE cells by RNA sequencing (RNA-seq) and the assay for transposase-accessible chromatin with sequencing (ATAC-seq).ResultsWe found that deletion of CHD7 led to reduced capacity to develop into DE and mesoderm in a dose-dependent manner. Loss of CHD7 led to significant changes in the expression and chromatin accessibility of genes associated with several pathways. We identified 40 genes that were highly down-regulated in both the expression and chromatin accessibility in CHD7 deleted hESC-DE cells.ConclusionsCHD7 is critical for DE and mesodermal development from hESCs. Our results provide new insights into the mechanisms by which CHD7 mutations cause multiple congenital anomalies.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-025-04437-9. View Publication -
文献(May 2025) Nature Communications 16Optimized AAV capsids for basal ganglia diseases show robust potency and distribution
Huntington’s disease and other disorders of the basal ganglia create challenges for biomolecule-based medicines given the poor accessibility of these deep brain structures following intracerebral or intravascular delivery. Here,we found that low dose,low volume delivery of unbiased AAV libraries into the globus pallidus allowed recovery of novel capsids capable of broad access to key deep brain and cortical structures relevant for human therapies. One such capsid,AAV-DB-3,provided transduction of up to 45% of medium spiny neurons in the adult NHP striatum,along with substantial transduction of relevant deep layer neurons in the cortex. Notably,AAV-DB-3 behaved similarly in mice as in NHPs and potently transduced human neurons derived from induced pluripotent stem cells. Thus,AAV-DB-3 provides a unique AAV for network level brain gene therapies that translates up and down the evolutionary scale for preclinical studies and eventual clinical use. To date,brain gene therapies require high vector doses. Here,authors devised an AAV capsid screen and found variants with unprecedented potency for transduction of deep brain and cortical neurons and human iPSC-neurons with cell tropism relevant for Huntington’s and Parkinson’s disease. View Publication -
文献(Aug 2024) CNS Neuroscience & Therapeutics 30 8Treating activated regulatory T cells with pramipexole protects human dopaminergic neurons from 6?OHDA?induced degeneration
AbstractBackgroundParkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra,which promotes a sustained inflammatory environment in the central nervous system. Regulatory T cells (Tregs) play an important role in the control of inflammation and might play a neuroprotective role. Indeed,a decrease in Treg number and function has been reported in PD. In this context,pramipexole,a dopaminergic receptor agonist used to treat PD symptoms,has been shown to increase peripheral levels of Treg cells and improve their suppressive function. The aim of this work was to determine the effect of pramipexole on immunoregulatory Treg cells and its possible neuroprotective effect on human dopaminergic neurons differentiated from human embryonic stem cells.MethodsTreg cells were sorted from white blood cells of healthy human donors. Assays were performed with CD3/CD28?activated and non?activated Treg cells treated with pramipexole at concentrations of 2 or 200 ng/mL. These regulatory cells were co?cultured with in vitro?differentiated human dopaminergic neurons in a cytotoxicity assay with 6?hydroxydopamine (6?OHDA). The role of interleukin?10 (IL?10) was investigated by co?culturing activated IL?10?producing Treg cells with neurons. To further investigate the effect of treatment on Tregs,gene expression in pramipexole?treated,CD3/CD28?activated Treg cells was determined by Fluidigm analysis.ResultsPramipexole?treated CD3/CD28?activated Treg cells showed significant protective effects on dopaminergic neurons when challenged with 6?OHDA. Pramipexole?treated activated Treg cells showed neuroprotective capacity through mechanisms involving IL?10 release and the activation of genes associated with regulation and neuroprotection.ConclusionAnti?CD3/CD28?activated Treg cells protect dopaminergic neurons against 6?OHDA?induced damage. In addition,activated,IL?10?producing,pramipexole?treated Tregs also induced a neuroprotective effect,and the supernatants of these co?cultures promoted axonal growth. Pramipexole?treated,activated Tregs altered their gene expression in a concentration?dependent manner,and enhanced TGF??related dopamine receptor regulation and immune?related pathways. These findings open new perspectives for the development of immunomodulatory therapies for the treatment of PD. Pramipexole?treated,activated regulatory T cells protect dopaminergic neurons against 6 OHDA damage and promote primary neurite length. This could be due to the production of the regulatory cytokine IL?10 and an increased expression of genes related to regulation and neuroprotection. View Publication -
文献(Feb 2025) Journal of Nanobiotechnology 23 5AG73-GelMA/AlgMA hydrogels provide a stable microenvironment for the generation of pancreatic progenitor organoids
Patient specific induced pluripotent stem cells (iPSCs) derived ? cells represent an effective means for disease modeling and autologous diabetes cell replacement therapy. In this study,an AG73-5%gelatin methacryloyl (GelMA) /2% alginate methacrylate (AlgMA) hydrogel was employed to generate pancreatic progenitor (PP) organoids and improve stem cell-derived ? (SC-?) cell differentiation protocol. The laminin-derived homolog AG73,which mimics certain cell?matrix interactions,facilitates AKT signaling pathway activation to promote PDX1+/NKX6.1+ PP organoid formation and effectively modulates subsequent epithelial–mesenchymal transition (EMT) in the endocrine lineage. The 5%GelMA/2%AlgMA hydrogel mimics the physiological stiffness of the pancreas,providing the optimal mechanical stress and spatial structure for PP organoid differentiation. The Syndecan-4 (SDC4)-ITGAV complex plays a pivotal role in the early stages of pancreatic development by facilitating the formation of SOX9+/PDX1+ bipotent PPs. Our findings demonstrate that AG73-GelMA/AlgMA hydrogel-derived SC-? cells exhibit enhanced insulin secretion and accelerated hyperglycemia reversal in vivo. This study presents a cost-effective,stable,and efficient alternative for the comprehensive 3D culture of SC-? cells in vitro by mitigating the uncertainties associated with conventional culture methods.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12951-025-03266-5. Graphical Abstract Supplementary InformationThe online version contains supplementary material available at 10.1186/s12951-025-03266-5. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号