技术资料
-
文献(Nov 2024) International Journal of Molecular Sciences 25 22Interleukin-6 Modulates the Expression and Function of HCN Channels: A Link Between Inflammation and Atrial Electrogenesis
Inflammatory cytokines,including interleukin 6 (IL6),are associated with ion channel remodeling and enhance the propensity to alterations in cardiac rhythm generation and propagation,in which the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a crucial role. Hence,we investigated the consequences of exposure to IL6 on HCN channels in cell models and human atrial biopsies. In murine atrial HL1 cells and in cardiomyocytes derived from human induced pluripotent stem cells (hiPS-CMs),IL6 elicited STAT3 phosphorylation,a receptor-mediated downstream signaling. Downregulation of HCN1,2,4 by IL6 was observed after 24–48 h; in hiPS-CMs,this effect was reverted by 24 h of application of tocilizumab,a human IL6 receptor antagonist. In parallel,hiPS-CM action potentials (APs) showed a reduced spontaneous frequency. Moreover,we assessed IL6 and HCN expression in dilated left atrial samples from patients with mitral valve disease,an AF-prone condition. IL6 levels were increased in dilated atria compared to controls and positively correlated with echocardiographic atrial dimensions. Interestingly,the highest IL6 transcript levels and the lowest HCN4 and HCN2 expression were in these samples. In conclusion,our data uncovered a novel link between IL6 and cardiac HCN channels,potentially contributing to atrial electrical disturbances and a higher risk of dysrhythmias in conditions with elevated IL6 levels. View Publication -
文献(May 2024) Frontiers in Molecular Neuroscience 17Dolutegravir induces FOLR1 expression during brain organoid development
During the first month of pregnancy,the brain and spinal cord are formed through a process called neurulation. However,this process can be altered by low serum levels of folic acid,environmental factors,or genetic predispositions. In 2018,a surveillance study in Botswana,a country with a high incidence of human immunodeficiency virus (HIV) and lacking mandatory food folate fortification programs,found that newborns whose mothers were taking dolutegravir (DTG) during the first trimester of pregnancy had an increased risk of neural tube defects (NTDs). As a result,the World Health Organization and the U.S. Food and Drug Administration have issued guidelines emphasizing the potential risks associated with the use of DTG-based antiretroviral therapies during pregnancy. To elucidate the potential mechanisms underlying the DTG-induced NTDs,we sought to assess the potential neurotoxicity of DTG in stem cell-derived brain organoids. The gene expression of brain organoids developed in the presence of DTG was analyzed by RNA sequencing,Optical Coherence Tomography (OCT),Optical Coherence Elastography (OCE),and Brillouin microscopy. The sequencing data shows that DTG induces the expression of the folate receptor (FOLR1) and modifies the expression of genes required for neurogenesis. The Brillouin frequency shift observed at the surface of DTG-exposed brain organoids indicates an increase in superficial tissue stiffness. In contrast,reverberant OCE measurements indicate decreased organoid volumes and internal stiffness. View Publication -
文献(May 2025) Pharmaceuticals 18 5Neuroprotective Effects of Qi Jing Wan and Its Active Ingredient Diosgenin Against Cognitive Impairment in Plateau Hypoxia
Background/Objectives: High-altitude environments have a significant detrimental impact on the cognitive functions of the brain. Qi Jing Wan (QJW),a traditional herbal formula composed of Angelica sinensis,Astragalus membranaceus,and Rhizoma Polygonati Odorati,has demonstrated potential efficacy in treating cognitive disorders. However,its effects on cognitive dysfunction in plateau hypoxic environments remain unclear. Methods: In this study,acute and chronic plateau cognitive impairment mouse models were constructed to investigate the preventive and therapeutic effects of QJW and its significant active ingredient,diosgenin (Dio). Behavioral experiments were conducted to assess learning and memory in mice. Morphological changes in hippocampal neurons and synapses were assessed,and microglial activation and inflammatory factor levels were measured to evaluate brain damage. Potential active ingredients capable of crossing the blood–brain barrier were identified through chemical composition analysis and network database screening,followed by validation in animal and brain organoid experiments. Transcriptomics analysis,immunofluorescence staining,and molecular docking techniques were employed to explore the underlying mechanisms. Results: QJW significantly enhanced learning and memory abilities in plateau model mice,reduced structural damage to hippocampal neurons,restored NeuN expression,inhibited inflammatory factor levels and microglial activation,and improved hippocampal synaptic damage. Transcriptomics analysis revealed that Dio alleviated hypoxic brain damage and protected cognitive function by regulating the expression of PDE4C. Conclusions: These findings indicate that QJW and its significant active ingredient Dio effectively mitigate hypoxic brain injury and prevent cognitive impairment in high-altitude environments. View Publication -
文献(Mar 2025) Basic & Clinical Pharmacology & Toxicology 136 5The Molecular and Clinical Impact of Atorvastatin Exposure on Paclitaxel Neurotoxicity in Sensory Neurons and Cancer Patients
ABSTRACTRecent evidence suggests that atorvastatin exacerbates paclitaxel neurotoxicity via P?glycoprotein inhibition. We used a translational approach to investigate if atorvastatin or simvastatin exacerbates (i) paclitaxel neurotoxicity in human sensory neurons and (ii) paclitaxel?induced peripheral neuropathy (PIPN) in cancer patients. Paclitaxel neurotoxicity was assessed by quantifying neuronal networks of human induced pluripotent stem cell?derived sensory neurons (iPSC?SNs) with and without atorvastatin or simvastatin exposure. We estimated the odds ratio (OR) of early paclitaxel discontinuation due to PIPN in a nationwide cohort of paclitaxel?treated women (2014–2018),comparing atorvastatin users to simvastatin users and nonusers of statins. Only the highest concentration of atorvastatin (100?nM) significantly exacerbated paclitaxel neurotoxicity in iPSC?SNs (p?0.05). Among 576 paclitaxel?treated women,atorvastatin use was not significantly associated with early paclitaxel discontinuation due to PIPN,with adjusted ORs of 0.80 [95% confidence interval (CI) 0.34–1.88] compared with simvastatin,and 1.24 [95% CI 0.44–3.53] compared with nonuse. Supplementary analyses showed varying but statistically nonsignificant results. Our in vitro findings suggest that atorvastatin,not simvastatin,significantly worsens paclitaxel neurotoxicity. However,no link was found between atorvastatin use and early paclitaxel discontinuation due to PIPN. Larger,well?designed studies are required to clarify the discrepancy between in vitro and clinical data and the inconsistencies with previous clinical evidence. View Publication -
文献(Jun 2024) Cell Death & Disease 15 6Mechano-inhibition of endocytosis sensitizes cancer cells to Fas-induced Apoptosis
The transmembrane death receptor Fas transduces apoptotic signals upon binding its ligand,FasL. Although Fas is highly expressed in cancer cells,insufficient cell surface Fas expression desensitizes cancer cells to Fas-induced apoptosis. Here,we show that the increase in Fas microaggregate formation on the plasma membrane in response to the inhibition of endocytosis sensitizes cancer cells to Fas-induced apoptosis. We used a clinically accessible Rho-kinase inhibitor,fasudil,that reduces endocytosis dynamics by increasing plasma membrane tension. In combination with exogenous soluble FasL (sFasL),fasudil promoted cancer cell apoptosis,but this collaborative effect was substantially weaker in nonmalignant cells. The combination of sFasL and fasudil prevented glioblastoma cell growth in embryonic stem cell-derived brain organoids and induced tumor regression in a xenograft mouse model. Our results demonstrate that sFasL has strong potential for apoptosis-directed cancer therapy when Fas microaggregate formation is augmented by mechano-inhibition of endocytosis. View Publication -
文献(Aug 2025) Scientific Reports 15 1 191Towards a quality control framework for cerebral cortical organoids
Cerebral organoids offer significant potential for neuroscience research as complex in vitro models that mimic human brain development. However,challenges related to their quality and reproducibility hinder their reliability. Discrepancies in morphology,size,cellular composition,and cytoarchitectural organization limit their applications,particularly in disease modeling,drug screening,and neurotoxicity testing. Critically,current methods for organoid characterization often lack standardization,restricting their broader applicability. To address the need for standardized quality assessment of cerebral organoids,we developed a Quality Control (QC) methodology for 60-day cortical organoids,evaluating five key criteria using a scoring system: morphology,size and growth profile,cellular composition,cytoarchitectural organization,and cytotoxicity. We implemented a hierarchical approach,beginning with non-invasive assessments to exclude low-quality organoids,while reserving in-depth analyses for those that passed the initial evaluation. To validate this framework,we exposed 60-day cortical organoids to graded doses of hydrogen peroxide (H2O2),inducing a range of quality outcomes. The QC system demonstrated its robustness by accurately discriminating organoid qualities. Our proposed QC framework is designed to be user-friendly,flexible,and broadly applicable,making it suitable for routine assessment of cerebral organoid quality. Additionally,its scalability enables industrial applications,offering a valuable tool for advancing both fundamental and pre-clinical research.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-14425-x. View Publication -
文献(Jun 2024) The EMBO Journal 43 16Physiological regulation of neuronal Wnt activity is essential for TDP-43 localization and function
Nuclear exclusion of the RNA- and DNA-binding protein TDP-43 can induce neurodegeneration in different diseases. Diverse processes have been implicated to influence TDP-43 mislocalization,including disrupted nucleocytoplasmic transport (NCT); however,the physiological pathways that normally ensure TDP-43 nuclear localization are unclear. The six-transmembrane enzyme glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) cleaves the glycosylphosphatidylinositol (GPI) anchor that tethers some proteins to the membrane. Here we show that GDE2 maintains TDP-43 nuclear localization by regulating the dynamics of canonical Wnt signaling. Ablation of GDE2 causes aberrantly sustained Wnt activation in adult neurons,which is sufficient to cause NCT deficits,nuclear pore abnormalities,and TDP-43 nuclear exclusion. Disruption of GDE2 coincides with TDP-43 abnormalities in postmortem tissue from patients with amyotrophic lateral sclerosis (ALS). Further,GDE2 deficits are evident in human neural cell models of ALS,which display erroneous Wnt activation that,when inhibited,increases mRNA levels of genes regulated by TDP-43. Our study identifies GDE2 as a critical physiological regulator of Wnt signaling in adult neurons and highlights Wnt pathway activation as an unappreciated mechanism contributing to nucleocytoplasmic transport and TDP-43 abnormalities in disease. Synopsis Nuclear exclusion of TDP-43 is observed in various pathologies,but the physiological mechanisms that ensure its nuclear localization are not well-known. This work shows that inhibition of persistent Wnt activation in neurons by GDE2 prevents TDP-43 nuclear exclusion. GDE2 inhibits canonical Wnt signaling in adult postmitotic neurons.Sustained activation of canonical Wnt signaling in neurons disrupts the nuclear pore complex,impairs nucleocytoplasmic transport,and results in TDP-43 nuclear exclusion.iPS neurons from patients with C9orf72 ALS show decreased GDE2 expression and increased activation of canonical Wnt signaling.Inhibition of Wnt activation mitigates TDP-43 dysfunction in C9orf72 iPS neurons. GDE2 maintains TDP-43 nuclear localization by inhibiting Wnt activation in neurons. View Publication -
文献(Aug 2024) STAR Protocols 5 3Protocol for generation and engineering of thyroid cell lineages using CRISPR-Cas9 editing to recapitulate thyroid cancer histotype progression
SummaryThyroid carcinoma represents the first malignancy among the endocrine organs. Investigating the cellular hierarchy and the mechanisms underlying the initiation of thyroid carcinoma is crucial in thyroid cancer research. Here,we present a protocol for deriving thyroid cell lineage from human embryonic stem cells. We also describe steps for engineering thyroid progenitor cells utilizing CRISPR-Cas9 technology,which can be used to perform in vivo studies,thus facilitating the development of representative thyroid tumorigenesis models.For complete details on the use and execution of this protocol,please refer to Veschi et al.1 Graphical abstract Highlights•Differentiation protocol for thyroid cell lineages from human embryonic stem cells•CRISPR-Cas9-mediated cellular engineering for common thyroid cancer genetic alteration•Orthotopic injection of thyroid progenitors to recapitulate thyroid cancer progression Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Thyroid carcinoma represents the first malignancy among the endocrine organs. Investigating the cellular hierarchy and the mechanisms underlying the initiation of thyroid carcinoma is crucial in thyroid cancer research. Here,we present a protocol for deriving thyroid cell lineage from human embryonic stem cells. We also describe steps for engineering thyroid progenitor cells utilizing CRISPR-Cas9 technology,which can be used to perform in vivo studies,thus facilitating the development of representative thyroid tumorigenesis models. View Publication -
文献(Jul 2024) eNeuro 11 7Assembling a Coculture System to Prepare Highly Pure Induced Pluripotent Stem Cell-Derived Neurons at Late Maturation Stages
Visual Abstract Generation of human induced pluripotent stem cell (hiPSC)-derived motor neurons (MNs) offers an unprecedented approach to modeling movement disorders such as dystonia and amyotrophic lateral sclerosis. However,achieving survival poses a significant challenge when culturing induced MNs,especially when aiming to reach late maturation stages. Utilizing hiPSC-derived motor neurons and primary mouse astrocytes,we assembled two types of coculture systems: direct coculturing of neurons with astrocytes and indirect coculture using culture inserts that physically separate neurons and astrocytes. Both systems significantly enhance neuron survival. Compared with these two systems,no significant differences in neurodevelopment,maturation,and survival within 3 weeks,allowing to prepare neurons at maturation stages. Using the indirect coculture system,we obtained highly pure MNs at the late mature stage from hiPSCs. Transcriptomic studies of hiPSC-derived MNs showed a typical neurodevelopmental switch in gene expression from the early immature stage to late maturation stages. Mature genes associated with neurodevelopment and synaptogenesis are highly enriched in MNs at late stages,demonstrating that these neurons achieve maturation. This study introduces a novel tool for the preparation of highly pure hiPSC-derived neurons,enabling the determination of neurological disease pathogenesis in neurons at late disease onset stages through biochemical approaches,which typically necessitate highly pure neurons. This advancement is particularly significant in modeling age-related neurodegeneration. View Publication -
文献(Sep 2024) Nature Communications 15RING1 missense variants reveal sensitivity of DNA damage repair to H2A monoubiquitination dosage during neurogenesis
Polycomb repressive complex 1 (PRC1) modifies chromatin through catalysis of histone H2A lysine 119 monoubiquitination (H2AK119ub1). RING1 and RNF2 interchangeably serve as the catalytic subunit within PRC1. Pathogenic missense variants in PRC1 core components reveal functions of these proteins that are obscured in knockout models. While Ring1a knockout models remain healthy,the microcephaly and neuropsychiatric phenotypes associated with a pathogenic RING1 missense variant implicate unappreciated functions. Using an in vitro model of neurodevelopment,we observe that RING1 contributes to the broad placement of H2AK119ub1,and that its targets overlap with those of RNF2. PRC1 complexes harboring hypomorphic RING1 bind target loci but do not catalyze H2AK119ub1,reducing H2AK119ub1 by preventing catalytically active complexes from accessing the locus. This results in delayed DNA damage repair and cell cycle progression in neural progenitor cells (NPCs). Conversely,reduced H2AK119ub1 due to hypomorphic RING1 does not generate differential expression that impacts NPC differentiation. In contrast,hypomorphic RNF2 generates a greater reduction in H2AK119ub1 that results in both delayed DNA repair and widespread transcriptional changes. These findings suggest that the DNA damage response is more sensitive to H2AK119ub1 dosage change than is regulation of gene expression. Here,the authors establish a human in vitro model of neurodevelopment to investigate an allelic series of clinically relevant RING1 and RNF2 missense variants. The observations reveal that missense variants function according to a dominant-negative genetic mechanism. View Publication -
文献(Dec 2024) Stem Cell Research & Therapy 15 15Matrix-free human lung organoids derived from induced pluripotent stem cells to model lung injury
BackgroundOrganoids,as near-physiological 3D culture systems,offer new opportunities to study the pathogenesis of various organs in mimicking the cellular complexity and functionality of human organs.MethodHere we used a quite simple and very practicable method to successfully generate induced pluripotent stem cell (iPSC)-derived human lung organoids (LuOrg) in a matrix-free manner as an alternative to the widely used preclinical mouse models in order to investigate normal lung damage in detail and as close as possible to the patient. We performed detailed morphological and molecular analyses,including bulk and single cell RNA sequencing,of generated lung organoids and evaluated the quality and robustness of our model as a potential in vitro platform for lung diseases,namely radiation-induced lung injury.ResultsA matrix-free method for differentiation of iPSCs can be used to obtain lung organoids that morphologically reflect the target tissue of the human lung very well,especially with regard to the cellular composition. The different cellular fates were investigated following the genotoxic stress induced by radiation and revealed further insights in the radiation-sensitivity of the different lung cells. Finally,we provide cellular gene sets found to be induced in the different lung organoid cellular subsets after irradiation,which could be used as additional RT response and particularly senescence gene sets in future studies.ConclusionBy establishing these free-floating LuOrgs for the investigation of cancer therapeutic approaches as a new and patient-oriented in vitro platform particularly in experimental radiooncology,not only a reduction in the number of experimental animals,but also an adequately and meaningfully replacement of corresponding animal experiments can be achieved.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-04106-3. Graphical abstract Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-04106-3. View Publication -
文献(Jun 2025) Cells 14 12Transcriptomic Profiling of iPS Cell-Derived Hepatocyte-like Cells Reveals Their Close Similarity to Primary Liver Hepatocytes
Human-induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) have been shown to be useful for the development of cell-based regenerative strategies and for modelling drug discovery. However,stem cell-derived HLCs are not identical in nature to primary human hepatocytes (PHHs),which could affect the cell phenotype and,potentially,model reliability. Therefore,we employed the in-depth gene expression profiling of HLCs and other important and relevant cell types,which led to the identification of clear similarities and differences between them at the transcriptional level. Through gene set enrichment analysis,we identified that genes that are critical for immune signalling pathways become downregulated upon HLC differentiation. Our analysis also found that TAV.HLCs exhibit a mild gene signature characteristic of acute lymphoblastic leukaemia,but not other selected cancers. Importantly,HLCs present significant similarity to PHHs,making them genuinely valuable for modelling human liver biology in vitro and for the development of prototype cell-based therapies for pre-clinical testing. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号