Sharei A et al. (FEB 2013)
Proceedings of the National Academy of Sciences 110 6 2082--2087
A vector-free microfluidic platform for intracellular delivery
Intracellular delivery of macromolecules is a challenge in research and therapeutic applications. Existing vector-based and physical methods have limitations,including their reliance on exogenous materials or electrical fields,which can lead to toxicity or off-target effects. We describe a microfluidic approach to delivery in which cells are mechanically deformed as they pass through a constriction 30–80% smaller than the cell diameter. The resulting controlled application of compression and shear forces results in the formation of transient holes that enable the diffusion of material from the surrounding buffer into the cytosol. The method has demonstrated the ability to deliver a range of material,such as carbon nanotubes,proteins,and siRNA,to 11 cell types,including embryonic stem cells and immune cells. When used for the delivery of transcription factors,the microfluidic devices produced a 10-fold improvement in colony formation relative to electroporation and cell-penetrating peptides. Indeed,its ability to deliver structurally diverse materials and its applicability to difficult-to-transfect primary cells indicate that this method could potentially enable many research and clinical applications.
View Publication
文献
D'Assoro AB et al. (JAN 2014)
Oncogene 33 5 599--610
The mitotic kinase Aurora--a promotes distant metastases by inducing epithelial-to-mesenchymal transition in ER$$(+) breast cancer cells.
In this study,we demonstrate that constitutive activation of Raf-1 oncogenic signaling induces stabilization and accumulation of Aurora-A mitotic kinase that ultimately drives the transition from an epithelial to a highly invasive mesenchymal phenotype in estrogen receptor $$-positive (ER$$(+)) breast cancer cells. The transition from an epithelial- to a mesenchymal-like phenotype was characterized by reduced expression of ER$$,HER-2/Neu overexpression and loss of CD24 surface receptor (CD24(-/low)). Importantly,expression of key epithelial-to-mesenchymal transition (EMT) markers and upregulation of the stemness gene SOX2 was linked to acquisition of stem cell-like properties such as the ability to form mammospheres in vitro and tumor self-renewal in vivo. Moreover,aberrant Aurora-A kinase activity induced phosphorylation and nuclear translocation of SMAD5,indicating a novel interplay between Aurora-A and SMAD5 signaling pathways in the development of EMT,stemness and ultimately tumor progression. Importantly,pharmacological and molecular inhibition of Aurora-A kinase activity restored a CD24(+) epithelial phenotype that was coupled to ER$$ expression,downregulation of HER-2/Neu,inhibition of EMT and impaired self-renewal ability,resulting in the suppression of distant metastases. Taken together,our findings show for the first time the causal role of Aurora-A kinase in the activation of EMT pathway responsible for the development of distant metastases in ER$$(+) breast cancer cells. Moreover,this study has important translational implications because it highlights the mitotic kinase Aurora-A as a novel promising therapeutic target to selectively eliminate highly invasive cancer cells and improve the disease-free and overall survival of ER$$(+) breast cancer patients resistant to conventional endocrine therapy.
View Publication
文献
Liu W et al. (FEB 2013)
Biochemical and Biophysical Research Communications 431 4 767--771
Mitochondrial metabolism transition cooperates with nuclear reprogramming during induced pluripotent stem cell generation
Induced pluripotent stem cells (iPSCs) hold great clinical potential for regenerative medicine. Much work has been done to investigate the mechanisms of their generation,focusing on the cell nucleus. However,the roles of specific organelles and in particular mitochondria in the potential mechanisms of nuclear reprogramming remain unclear. In this study,we sought to determine the role of mitochondrial metabolism transition in nuclear reprogramming. We found that the mitochondrial cristae had remodeled in iPSCs. The efficiency of iPSC generation was significantly reduced by down-regulation of mitochondrial inner membrane protein (IMMT),which regulates the morphology of mitochondrial cristae. Moreover,cells with the oxidative phosphorylation (OXPHOS) advantage had higher reprogramming efficiency than normal cells and the glycolysis intermediate lactic acid enhanced the efficiency of iPSCs generation. Our results show that the remodeling of mitochondrial cristae couples with the generation of iPSCs,suggesting mitochondrial metabolism transition plays an important role in nuclear reprogramming.
View Publication
文献
Zhu J et al. (JAN 2013)
Cell 152 3 642--654
Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues
Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background,yet the landscapes of in vivo tissues remain largely uncharted. Here,we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages,lineages,and cellular environments. They also reveal global features of the epigenome,related to nuclear architecture,that also vary across cellular phenotypes. Specifically,developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture,and discuss their implications for lineage fidelity,cellular senescence,and reprogramming. ?? 2013 Elsevier Inc.
View Publication
文献
Sutherland HJ et al. (MAY 1990)
Proceedings of the National Academy of Sciences of the United States of America 87 9 3584--8
Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers.
A major goal of current hematopoiesis research is to develop in vitro methods suitable for the measurement and characterization of stem cells with long-term in vivo repopulating potential. Previous studies from several centers have suggested the presence in normal human or murine marrow of a population of very primitive cells that are biologically,physically,and pharmacologically different from cells detectable by short-term colony assays and that can give rise to the latter in long-term cultures (LTCs) containing a competent stromal cell layer. In this report,we show that such cultures can be used to provide a quantitative assay for human LTC-initiating cells" based on an assessment of the number of clonogenic cells present after 5-8 weeks. Production of derivative clonogenic cells is shown to be absolutely dependent on the presence of a stromal cell feeder. When this requirement is met�
View Publication
文献
Kregel S et al. (JAN 2013)
PLoS ONE 8 1 e53701
Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer
Despite advances in detection and therapy,castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways,and their regulation by the Androgen Receptor (AR),has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced,castrate-resistant prostate cancers. To this end,we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate,Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative,with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1,endogenous expression of Sox2 was repressed by AR signaling,and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise,in normal prostate epithelial cells and human embryonic stem cells,increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines,and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration,and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways.
View Publication
文献
Choi SM et al. (JUN 2013)
Hepatology 57 6 2458--2468
Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells
UNLABELLED: Patient-specific induced pluripotent stem cells (iPSCs) represent a potential source for developing novel drug and cell therapies. Although increasing numbers of disease-specific iPSCs have been generated,there has been limited progress in iPSC-based drug screening/discovery for liver diseases,and the low gene-targeting efficiency in human iPSCs warrants further improvement. Using iPSC lines from patients with alpha-1 antitrypsin (AAT) deficiency,for which there is currently no drug or gene therapy available,we established a platform to discover new drug candidates and correct disease-causing mutation with a high efficiency. A high-throughput format screening assay,based on our hepatic differentiation protocol,was implemented to facilitate automated quantification of cellular AAT accumulation using a 96-well immunofluorescence reader. To expedite the eventual application of lead compounds to patients,we conducted drug screening utilizing our established library of clinical compounds (the Johns Hopkins Drug Library) with extensive safety profiles. Through a blind large-scale drug screening,five clinical drugs were identified to reduce AAT accumulation in diverse patient iPSC-derived hepatocyte-like cells. In addition,using the recently developed transcription activator-like effector nuclease technology,we achieved high gene-targeting efficiency in AAT-deficiency patient iPSCs with 25%-33% of the clones demonstrating simultaneous targeting at both diseased alleles. The hepatocyte-like cells derived from the gene-corrected iPSCs were functional without the mutant AAT accumulation. This highly efficient and cost-effective targeting technology will broadly benefit both basic and translational applications.backslashnbackslashnCONCLUSIONS: Our results demonstrated the feasibility of effective large-scale drug screening using an iPSC-based disease model and highly robust gene targeting in human iPSCs,both of which are critical for translating the iPSC technology into novel therapies for untreatable diseases.
View Publication
文献
Lu B and Palacino J (MAY 2013)
The FASEB Journal 27 5 1820--1829
A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration
Most neurodegenerative diseases are linked to aberrant accumulation of aggregation-prone proteins. Among them,Huntington's disease (HD) is caused by an expanded polyglutamine repeat stretch in the N terminus of the mutant huntingtin protein (mHTT),which gets cleaved and aggregates in the brain. Recently established human induced pluripotent stem cell-derived HD neurons exhibit some disease-relevant phenotypes and provide tools for HD research. However,they have limitations such as genetic heterogeneity and an absence of mHTT aggregates and lack a robust neurodegeneration phenotype. In addition,the relationship between the phenotype and mHTT levels has not been elucidated. Herein,we present a human embryonic stem cell (hESC)-derived HD neuronal model expressing HTTexon1 fragments,which addresses the deficiencies enumerated above. The wild-type and HD lines are derived from an isogenic background and exhibit insoluble mHTT aggregates and neurodegeneration. We also demonstrate a quantitative relationship between neurodegeneration and soluble monomeric (but not oligomeric or aggregated) mHTT levels. Reduction of ∼10% of mHTT is sufficient to prevent toxicity,whereas ∼90% reduction of wild-type HTT is safe and well-tolerated in these cells. A known HD toxicity modifier (Rhes) showed expected rescue of neurodegeneration. Therefore,the hESC-derived neuronal models complement existing induced pluripotent stem cell-derived neuronal models and provide valuable tools for HD research.—Lu,B.,Palacino,J. A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration.
View Publication
文献
Onuma Y et al. (FEB 2013)
Biochemical and biophysical research communications 431 3 524--529
RBC2LCN, a new probe for live cell imaging of human pluripotent stem cells
Cell surface biomarkers have been applied to discriminate pluripotent human embryonic stem cells and induced pluripotent stem cells from differentiated cells. Here,we demonstrate that a recombinant lectin probe,rBC2LCN,a new tool for fluorescence-based imaging and flow cytometry analysis of pluripotent stem cells,is an alternative to conventional pluripotent maker antibodies. Live or fixed colonies of both human embryonic stem cells and induced pluripotent stem cells were visualized in culture medium containing fluorescent dye-labeled rBC2LCN. Fluorescent dye-labeled rBC2LCN was also successfully used to separate live pluripotent stem cells from a mixed cell population by flow cytometry. textcopyright 2013 Elsevier Inc.
View Publication
文献
Lee JH et al. (MAR 2013)
Oncology reports 29 3 917--924
The combination of sorafenib and radiation preferentially inhibits breast cancer stem cells by suppressing HIF-1$$ expression.
The importance of anticancer stem cell research for breast cancer lies in the possibility of providing new approaches for an improved understanding of anticancer activity and cancer treatment. In this study,we demonstrated that the preclinical therapeutic efficacy of combining the multikinase inhibitor sorafenib with radiation was more effective in hypoxia-exposed breast cancer stem cells. We assessed cell viability and Annexin V to evaluate the combined effect of sorafenib and radiation following exposure to hypoxia. Our results showed that the synergistic cytotoxicity increased tumor cell apoptosis significantly and reduced cell proliferation in MDA-MB-231 and MCF-7 cells under hypoxic conditions compared to sorafenib or radiation alone in vitro. Additionally,the combined treatment induced G2/M cell cycle arrest. Notably,the combination of sorafenib and radiation eliminated CD44+CD24-/low cells preferentially,which highly expressed hypoxia-inducible factor (HIF)-1$$ and effectively inhibited primary and secondary mammosphere formation in MDA-MB-231 cells. A combined effect on MDA-MB‑231 cells in response to hypoxia was shown by inhibiting angiogenesis and metastasis by suppression of HIF-1$$ and matrix metalloproteinase-2 (MMP-2). Collectively,these results indicate that the efficacy of sorafenib combined with radiation for treating human breast cancer cells is synergistic and suggest a new therapeutic approach to prevent breast cancer progression by eliminating breast cancer stem cells.
View Publication
文献
Wend P et al. (FEB 2013)
EMBO molecular medicine 5 2 264--279
WNT10B/$$-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer.
Wnt/$$-catenin signalling has been suggested to be active in basal-like breast cancer. However,in highly aggressive metastatic triple-negative breast cancers (TNBC) the role of $$-catenin and the underlying mechanism(s) for the aggressiveness of TNBC remain unknown. We illustrate that WNT10B induces transcriptionally active $$-catenin in human TNBC and predicts survival-outcome of patients with both TNBC and basal-like tumours. We provide evidence that transgenic murine Wnt10b-driven tumours are devoid of ER$$,PR and HER2 expression and can model human TNBC. Importantly,HMGA2 is specifically expressed during early stages of embryonic mammogenesis and absent when WNT10B expression is lost,suggesting a developmentally conserved mode of action. Mechanistically,ChIP analysis uncovered that WNT10B activates canonical $$-catenin signalling leading to up-regulation of HMGA2. Treatment of mouse and human triple-negative tumour cells with two Wnt/$$-catenin pathway modulators or siRNA to HMGA2 decreases HMGA2 levels and proliferation. We demonstrate that WNT10B has epistatic activity on HMGA2,which is necessary and sufficient for proliferation of TNBC cells. Furthermore,HMGA2 expression predicts relapse-free-survival and metastasis in TNBC patients.
View Publication
文献
Zhang R et al. (JAN 2013)
Nature communications 4 1335
A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells
Cultures of human embryonic stem cell typically rely on protein matrices or feeder cells to support attachment and growth,while mechanical,enzymatic or chemical cell dissociation methods are used for cellular passaging. However,these methods are ill defined,thus introducing variability into the system,and may damage cells. They also exert selective pressures favouring cell aneuploidy and loss of differentiation potential. Here we report the identification of a family of chemically defined thermoresponsive synthetic hydrogels based on 2-(diethylamino)ethyl acrylate,which support long-term human embryonic stem cell growth and pluripotency over a period of 2-6 months. The hydrogels permitted gentle,reagent-free cell passaging by virtue of transient modulation of the ambient temperature from 37 to 15 °C for 30 min. These chemically defined alternatives to currently used,undefined biological substrates represent a flexible and scalable approach for improving the definition,efficacy and safety of human embryonic stem cell culture systems for research,industrial and clinical applications.
View Publication