Chen D et al. (MAY 2014)
Genes & Cancer 5 5-6 212--25
Increased expression of Id1 and Id3 promotes tumorigenicity by enhancing angiogenesis and suppressing apoptosis in small cell lung cancer.
Constant deregulation of Id1 and Id3 has been implicated in a wide range of carcinomas. However,underlying molecular evidence for the joint role of Id1 and Id3 in the tumorigenicity of small cell lung cancer (SCLC) is sparse. Investigating the biological significance of elevated expression in SCLC cells,we found that Id1 and Id3 co-suppression resulted in significant reduction of proliferation rate,invasiveness and anchorage-independent growth. Suppressing both Id1 and Id3 expression also greatly reduced the average size of tumors produced by transfectant cells when inoculated subcutaneously into nude mice. Further investigation revealed that suppressed expression of Id1 and Id3 was accompanied by decreased angiogenesis and increased apoptosis. Therefore,the SCLC tumorigenicity suppression effect of double knockdown of Id1 and Id3 may be regulated through pathways of apoptosis and angiogenesis.
View Publication
文献
Liu Y et al. (JUL 2014)
PLoS ONE 9 7 e100885
Modulating notochordal differentiation of human induced pluripotent stem cells using natural nucleus pulposus tissue matrix
Human induced pluripotent stem cells (hiPSCs) can differentiate into notochordal cell (NC)-like cells when cultured in the presence of natural porcine nucleus pulposus (NP) tissue matrix. The method promises massive production of high-quality,functional cells to treat degenerative intervertebral discs (IVDs). Based on our previous work,we further examined the effect of cell-NP matrix contact and culture medium on the differentiation,and further assessed the functional differentiation ability of the generated NC-like. The study showed that direct contact between hiPSCs and NP matrix can promote the differentiation yield,whilst both the contact and non-contact cultures can generate functional NC-like cells. The generated NC-like cells are highly homogenous regarding the expression of notochordal marker genes. A culture medium containing a cocktail of growth factors (FGF,EGF,VEGF and IGF-1) also supported the notochordal differentiation in the presence of NP matrix. The NC-like cells showed excellent functional differentiation ability to generate NP-like tissue which was rich in aggrecan and collagen type II; and particularly,the proteoglycan to collagen content ratio was as high as 12.5-17.5 which represents a phenotype close to NP rather than hyaline cartilage. Collectively,the present study confirmed the effectiveness and flexibility of using natural NP tissue matrix to direct notochordal differentiation of hiPSCs,and the potential of using the generated NC-like cells for treating IVD degeneration.
View Publication
文献
Kim G-H et al. ( 2014)
Angewandte Chemie (International ed. in English) 53 35 9271--9274
Imidazole-based small molecules that promote neurogenesis in pluripotent cells.
Reported herein are two imidazole-based small molecules,termed neurodazine (Nz) and neurodazole (Nzl),which induce neuronal differentiation of pluripotent P19 cells. Their ability to induce neurogenesis of P19 cells is comparable to that of retinoic acid. However,Nz and Nzl were found to be more selective neurogenesis inducers than retinoic acid owing to their unique ability to suppress astrocyte differentiation of P19 cells. Our results also show that Nz and Nzl promote production of physiologically active neurons because P19-cell-derived neurons induced by these substances have functional glutamate responsiveness. The present study suggests that Nz and Nzl could serve as important chemical tools to induce formation of specific populations of neuronal cell types from pluripotent cells.
View Publication
文献
Wang Y et al. ( 2014)
Nature Communications 5 4432
An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling
The mammalian immune system constitutively senses vast quantities of commensal bacteria and their products through pattern recognition receptors,yet excessive immune reactivity is prevented under homeostasis. The intestinal microbiome can influence host susceptibility to extra-intestinal autoimmune disorders. Here we report that polysaccharide A (PSA),a symbiosis factor for the human intestinal commensal Bacteroides fragilis,protects against central nervous system demyelination and inflammation during experimental autoimmune encephalomyelitis (EAE),an animal model for multiple sclerosis,through Toll-like receptor 2 (TLR2). TLR2 mediates tissue-specific expansion of a critical regulatory CD39(+) CD4 T-cell subset by PSA. Ablation of CD39 signalling abrogates PSA control of EAE manifestations and inflammatory cytokine responses. Further,CD39 confers immune-regulatory phenotypes to total CD4 T cells and Foxp3(+) CD4 Tregs. Importantly,CD39-deficient CD4 T cells show an enhanced capability to drive EAE progression. Our results demonstrate the therapeutic potential and underlying mechanism by which an intestinal symbiont product modulates CNS-targeted demyelination.
View Publication
文献
Chlon TM et al. (OCT 2014)
Journal of virology 88 19 11315--11326
High-risk human papillomavirus E6 protein promotes reprogramming of Fanconi anemia patient cells through repression of p53 but does not allow for sustained growth of induced pluripotent stem cells.
DNA repair plays a crucial role in embryonic and somatic stem cell biology and cell reprogramming. The Fanconi anemia (FA) pathway,which promotes error-free repair of DNA double-strand breaks,is required for somatic cell reprogramming to induced pluripotent stem cells (iPSC). Thus,cells from Fanconi anemia patients,which lack this critical pathway,fail to be reprogrammed to iPSC under standard conditions unless the defective FA gene is complemented. In this study,we utilized the oncogenes of high-risk human papillomavirus 16 (HPV16) to overcome the resistance of FA patient cells to reprogramming. We found that E6,but not E7,recovers FA iPSC colony formation and,furthermore,that p53 inhibition is necessary and sufficient for this activity. The iPSC colonies resulting from each of these approaches stained positive for alkaline phosphatase,NANOG,and Tra-1-60,indicating that they were fully reprogrammed into pluripotent cells. However,FA iPSC were incapable of outgrowth into stable iPSC lines regardless of p53 suppression,whereas their FA-complemented counterparts grew efficiently. Thus,we conclude that the FA pathway is required for the growth of iPSC beyond reprogramming and that p53-independent mechanisms are involved. IMPORTANCE A novel approach is described whereby HPV oncogenes are used as tools to uncover DNA repair-related molecular mechanisms affecting somatic cell reprogramming. The findings indicate that p53-dependent mechanisms block FA cells from reprogramming but also uncover a previously unrecognized defect in FA iPSC proliferation independent of p53.
View Publication
文献
I. Elcheva et al. (jul 2014)
Nature communications 5 164 4372
Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators.
Advancing pluripotent stem cell technologies for modelling haematopoietic stem cell development and blood therapies requires identifying key regulators of haematopoietic commitment from human pluripotent stem cells (hPSCs). Here,by screening the effect of 27 candidate factors,we reveal two groups of transcriptional regulators capable of inducing distinct haematopoietic programs from hPSCs: pan-myeloid (ETV2 and GATA2) and erythro-megakaryocytic (GATA2 and TAL1). In both cases,these transcription factors directly convert hPSCs to endothelium,which subsequently transform into blood cells with pan-myeloid or erythro-megakaryocytic potential. These data demonstrate that two distinct genetic programs regulate the haematopoietic development from hPSCs and that both of these programs specify hPSCs directly to haemogenic endothelial cells. In addition,this study provides a novel method for the efficient induction of blood and endothelial cells from hPSCs via the overexpression of modified mRNA for the selected transcription factors.
View Publication
文献
Dirian L et al. (JUL 2014)
Developmental cell 30 2 123--36
Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells.
Little is known on the embryonic origin and related heterogeneity of adult neural stem cells (aNSCs). We use conditional genetic tracing,activated in a global or mosaic fashion by cell type-specific promoters or focal laser uncaging,coupled with gene expression analyses and Notch invalidations,to address this issue in the zebrafish adult telencephalon. We report that the germinal zone of the adult pallium originates from two distinct subtypes of embryonic progenitors and integrates two modes of aNSC formation. Dorsomedial aNSCs derive from the amplification of actively neurogenic radial glia of the embryonic telencephalon. On the contrary,the lateral aNSC population is formed by stepwise addition at the pallial edge from a discrete neuroepithelial progenitor pool of the posterior telencephalic roof,activated at postembryonic stages and persisting lifelong. This dual origin of the pallial germinal zone allows the temporally organized building of pallial territories as a patchwork of juxtaposed compartments.
View Publication
文献
Vachharajani VT et al. (NOV 2014)
Journal of leukocyte biology 96 5 785--96
SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome.
Mechanism-based sepsis treatments are unavailable,and their incidence is rising worldwide. Deaths occur during the early acute phase of hyperinflammation or subsequent postacute hypoinflammatory phase with sustained organ failure. The acute sepsis phase shifts rapidly,and multiple attempts to treat early excessive inflammation have uniformly failed. We reported in a sepsis cell model and human sepsis blood leukocytes that nuclear NAD+ sensor SIRT1 deacetylase remodels chromatin at specific gene sets to switch the acute-phase proinflammatory response to hypoinflammatory. Importantly,SIRT1 chromatin reprogramming is reversible,suggesting that inhibition of SIRT1 might reverse postacute-phase hypoinflammation. We tested this concept in septic mice,using the highly specific SIRT1 inhibitor EX-527,a small molecule that closes the NAD+ binding site of SIRT1. Strikingly,when administered 24 h after sepsis,all treated animals survived,whereas only 40% of untreated mice survived. EX-527 treatment reversed the inability of leukocytes to adhere at the small intestine MVI,reversed in vivo endotoxin tolerance,increased leukocyte accumulation in peritoneum,and improved peritoneal bacterial clearance. Mechanistically,the SIRT1 inhibitor restored repressed endothelial E-selectin and ICAM-1 expression and PSGL-1 expression on the neutrophils. Systemic benefits of EX-527 treatment included stabilized blood pressure,improved microvascular blood flow,and a shift toward proimmune macrophages in spleen and bone marrow. Our findings reveal that modifying the SIRT1 NAD+ axis may provide a novel way to treat sepsis in its hypoinflammatory phase.
View Publication
文献
Albini S and Puri PL (JUN 2014)
Journal of visualized experiments : JoVE 88 e51243
Generation of myospheres from hESCs by epigenetic reprogramming.
Generation of a homogeneous and abundant population of skeletal muscle cells from human embryonic stem cells (hESCs) is a requirement for cell-based therapies and for a disease in a dish" model of human neuromuscular diseases. Major hurdles�
View Publication
文献
Yang L et al. ( 2014)
Current Protocols in Molecular Biology 107 31.1.1----17
CRISPR/Cas9-Directed Genome Editing of Cultured Cells.
Human genome engineering has been transformed by the introduction of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) system found in most bacteria and archaea. Type II CRISPR/Cas systems have been engineered to induce RNA-guided genome editing in human cells,where small RNAs function together with Cas9 nucleases for sequence-specific cleavage of target sequences. Here we describe the protocol for Cas9-mediated human genome engineering,including construct building and transfection methods necessary for delivering Cas9 and guide RNA (gRNA) into human-induced pluripotent stem cells (hiPSCs) and HEK293 cells. Following genome editing,we also describe methods to assess genome editing efficiency using next-generation sequencing and isolate monoclonal hiPSCs with the desired modifications for downstream applications.
View Publication
文献
Bouchi R et al. (JAN 2014)
Nature communications 5 4242
FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures.
Generation of surrogate sources of insulin-producing β-cells remains a goal of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into β-like-cells through endodermal progenitors,we have shown that gut endocrine progenitor cells of mice can be differentiated into glucose-responsive,insulin-producing cells by ablation of transcription factor Foxo1. Here we show that FOXO1 is present in human gut endocrine progenitor and serotonin-producing cells. Using gut organoids derived from human iPS cells,we show that FOXO1 inhibition using a dominant-negative mutant or lentivirus-encoded small hairpin RNA promotes generation of insulin-positive cells that express all markers of mature pancreatic β-cells,release C-peptide in response to secretagogues and survive in vivo following transplantation into mice. The findings raise the possibility of using gut-targeted FOXO1 inhibition or gut organoids as a source of insulin-producing cells to treat human diabetes.
View Publication
文献
Mehta A et al. (NOV 2014)
Biochimica et biophysica acta 1843 11 2394--2402
Phasic modulation of Wnt signaling enhances cardiac differentiation in human pluripotent stem cells by recapitulating developmental ontogeny.
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) offer immense value in studying cardiovascular regenerative medicine. However,intrinsic biases and differential responsiveness of hPSCs towards cardiac differentiation pose significant technical and logistic hurdles that hamper human cardiomyocyte studies. Tandem modulation of canonical and non-canonical Wnt signaling pathways may play a crucial role in cardiac development that can efficiently generate cardiomyocytes from pluripotent stem cells. Our Wnt signaling expression profiles revealed that phasic modulation of canonical/non-canonical axis enabled orderly recapitulation of cardiac developmental ontogeny. Moreover,evaluation of 8 hPSC lines showed marked commitment towards cardiac-mesoderm during the early phase of differentiation,with elevated levels of canonical Wnts (Wnt3 and 3a) and Mesp1. Whereas continued activation of canonical Wnts was counterproductive,its discrete inhibition during the later phase of cardiac differentiation was accompanied by significant up-regulation of non-canonical Wnt expression (Wnt5a and 11) and enhanced Nkx2.5(+) (up to 98%) populations. These Nkx2.5(+) populations transited to contracting cardiac troponin T-positive CMs with up to 80% efficiency. Our results suggest that timely modulation of Wnt pathways would transcend intrinsic differentiation biases of hPSCs to consistently generate functional CMs that could facilitate their scalable production for meaningful clinical translation towards personalized regenerative medicine.
View Publication