J. Wagner et al. (JUN 2018)
The Journal of clinical investigation 128 6 2325--2338
Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment.
ONC201 is a first-in-class,orally active antitumor agent that upregulates cytotoxic TRAIL pathway signaling in cancer cells. ONC201 has demonstrated safety and preliminary efficacy in a first-in-human trial in which patients were dosed every 3 weeks. We hypothesized that dose intensification of ONC201 may impact antitumor efficacy. We discovered that ONC201 exerts dose- and schedule-dependent effects on tumor progression and cell death signaling in vivo. With dose intensification,we note a potent anti-metastasis effect and inhibition of cancer cell migration and invasion. Our preclinical results prompted a change in ONC201 dosing in all open clinical trials. We observed accumulation of activated NK+ and CD3+ cells within ONC201-treated tumors and that NK cell depletion inhibits ONC201 efficacy in vivo,including against TRAIL/ONC201-resistant Bax-/- tumors. Immunocompetent NCR1-GFP mice,in which NK cells express GFP,demonstrated GFP+ NK cell infiltration of syngeneic MC38 colorectal tumors. Activation of primary human NK cells and increased degranulation occurred in response to ONC201. Coculture experiments identified a role for TRAIL in human NK-mediated antitumor cytotoxicity. Preclinical results indicate the potential utility for ONC201 plus anti-PD-1 therapy. We observed an increase in activated TRAIL-secreting NK cells in the peripheral blood of patients after ONC201 treatment. The results offer what we believe to be a unique pathway of immune stimulation for cancer therapy.
View Publication
M. Shin et al. (MAR 2018)
Chemical science 9 9 2419--2431
Isoform-selective activity-based profiling of ERK signaling.
Extracellular signal-regulated kinases (ERKs) mediate downstream signaling of RAS-RAF-MEK as key regulators of the mitogen-activated protein kinase (MAPK) pathway. Activation of ERK signaling is a hallmark of cancer and upstream MAPK proteins have been extensively pursued as drug targets for cancer therapies. However,the rapid rise of resistance to clinical RAF and MEK inhibitors has prompted interest in targeting ERK (ERK1 and ERK2 isoforms) directly for cancer therapy. Current methods for evaluating activity of inhibitors against ERK isoforms are based primarily on analysis of recombinant proteins. Strategies to directly and independently profile native ERK1 and ERK2 activity would greatly complement current cell biological tools used to probe and target ERK function. Here,we present a quantitative chemoproteomic strategy that utilizes active-site directed probes to directly quantify native ERK activity in an isoform-specific fashion. We exploit a single isoleucine/leucine difference in ERK substrate binding sites to enable activity-based profiling of ERK1 versus ERK2 across a variety of cell types,tissues,and species. We used our chemoproteomic strategy to determine potency and selectivity of academic (VX-11e) and clinical (Ulixertinib) ERK inhibitors. Correlation of potency estimates by chemoproteomics with anti-proliferative activity of VX-11e and Ulixertinib revealed that {\textgreater}90{\%} inactivation of both native ERK1 and ERK2 is needed to mediate cellular activity of inhibitors. Our findings introduce one of the first assays capable of independent evaluation of native ERK1 and ERK2 activity to advance drug discovery of oncogenic MAPK pathways.
View Publication
D. Sharma et al. (DEC 2018)
Gastroenterology 154 4 948--964.e8
Pyrin Inflammasome Regulates Tight Junction Integrity to Restrict Colitis and Tumorigenesis.
BACKGROUND & AIMS Inflammatory bowel diseases (IBD) increase risk for colorectal cancer. Mutations in the Mediterranean fever gene (MEFV or pyrin) are associated with hereditary autoinflammatory disease and severe IBD. Expression of MEFV,a sensor protein that the initiates assembly of the inflammasome complex,is increased in colon biopsies from patients with IBD. We investigated the role of pyrin in intestinal homeostasis in mice. METHODS Mefv-/- mice and C57/BL6 mice (controls) were given azoxymethane followed by multiple rounds of dextran sodium sulfate (DSS) to induce colitis and tumorigenesis. In some experiments,Mefv-/- mice were given injections of recombinant interleukin 18 (rIL18) or saline (control) during DSS administration. Colon tissues were collected at different time points during colitis development and analyzed by histology,immunohistochemistry,immunoblots,or ELISAs (to measure cytokines). Spleen and mesenteric lymph node were collected,processed,and analyzed by flow cytometry. Colon epithelial permeability was measured in mice with colitis by gavage of fluorescent dextran and quantification of serum levels. RESULTS MEFV was expressed in colons of control mice and expression increased during chronic and acute inflammation; high levels were detected in colon tumor and adjacent non-tumor tissues. Mefv-/- mice developed more severe colitis than control mice,with a greater extent of epithelial hyperplasia and a larger tumor burden. Levels of inflammatory cytokines (IL6) and chemokines were significantly higher in colons of Mefv-/- mice than control mice following colitis induction,whereas the level IL18,which depends on the inflammasome for maturation and release,was significantly lower in colons of Mefv-/- mice. Mefv-/- mice had increased epithelial permeability following administration of DSS than control mice,and loss of the tight junction proteins occludin and claudin-2 from intercellular junctions. STAT3 was activated (phosphorylated) in inflamed colon tissues from Mefv-/-,which also had increased expression of stem cell markers (OLFM4,BMI1,and MSI1) compared with colons from control mice. Administration of rIL18 to Mefv-/- mice reduced epithelial permeability,intestinal inflammation,the severity of colitis,and colon tumorigenesis. CONCLUSIONS In studies with DSS-induced colitis,we found that pyrin (MEFV) is required for inflammasome activation and IL18 maturation,which promote intestinal barrier integrity and prevent colon inflammation and tumorigenesis. Strategies to increase activity of MEFV or IL18 might be developed for the treatment of IBD and prevention of colitis-associated tumorigenesis.
View Publication
G. Sette et al. (JUL 2018)
International journal of cancer 143 1 88--99
Conditionally reprogrammed cells (CRC) methodology does not allow the in vitro expansion of patient-derived primary and metastatic lung cancer cells.
Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently,conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However,the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here,we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay,monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly,pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast,brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion,patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions,limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus,CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells,as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells.
View Publication
Y. Sei et al. (MAY 2018)
American journal of physiology. Gastrointestinal and liver physiology
Mature Enteroendocrine Cells Contributes to Basal and Pathological Stem Cell Dynamics in the Small Intestine.
Lgr5-expressing intestinal stem cells (ISCs) maintain continuous and rapid generation of the intestinal epithelium. Here we present evidence that dedifferentiation of committed enteroendocrine cells (EECs) contributes to maintenance of the epithelium under both basal conditions and in response to injury. Lineage tracing studies identified a subset of EECs that reside at +4 position for more than 2 weeks,most of which were BrdU-label-retaining cells. Under basal conditions,cells derived from these EECs grow from the bottom of the crypt to generate intestinal epithelium according to neutral drift kinetics that is consistent with dedifferentiation of mature EECs to ISCs. The lineage tracing of EECs demonstrated reserve stem cell properties in response to radiation-induced injury with the generation of reparative EEC-derived epithelial patches. Finally,the enterochromaffin (EC) cell was the predominant EEC type participating in these stem cell dynamics. These results provide novel insights into the +4 reserve ISC hypothesis,stem cell dynamics of the intestinal epithelium and novel insight in the development of EC-derived small intestinal tumors.
View Publication
S. B. Ross et al. ( 2017)
Stem cell research 20 88--90
Generation of induced pluripotent stem cells (iPSCs) from a hypertrophic cardiomyopathy patient with the pathogenic variant p.Val698Ala in beta-myosin heavy chain (MYH7) gene.
Induced pluripotent stem cells (iPSCs) were generated from peripheral blood mononuclear cells (PBMCs) isolated from the whole blood of a 43-year-old male with hypertrophic cardiomyopathy (HCM) who carries the pathogenic variant p.Val698Ala in beta-myosin heavy chain (MYH7). Patient-derived PBMCs were reprogrammed using non-integrative episomal vectors containing reprogramming factors OCT4,SOX2,LIN28,KLF4 and L-MYC. iPSCs were shown to express pluripotent markers,have trilineage differentiation potential,carry the pathogenic MYH7 variant p.Val698Ala,have a normal karyotype and no longer carry the episomal reprogramming vector. This line is useful for studying the link between variants in MYH7 and the pathogenesis of HCM.
View Publication
S. J. Priceman et al. ( 2018)
Oncoimmunology 7 2 e1380764
Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer.
Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy,given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens,including prostate stem-cell antigen (PSCA),are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial,it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with on-target off-tumor" activity. Here
View Publication
P. Opazo et al. (JUN 2018)
Cell reports 23 11 3137--3145
Alzheimer's disease (AD) is emerging as a synaptopathology driven by metaplasticity. Indeed,reminiscent of metaplasticity,oligomeric forms of the amyloid-beta$ peptide (oAbeta$) prevent induction of long-term potentiation (LTP) via the prior activation of GluN2B-containing NMDA receptors (NMDARs). However,the downstream Ca2+-dependent signaling molecules that mediate aberrant metaplasticity are unknown. In this study,we show that oAbeta$ promotes the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) via GluN2B-containing NMDARs. Importantly,we find that CaMKII inhibition rescues both the LTP impairment and the dendritic spine loss mediated by oAbeta$. Mechanistically resembling metaplasticity,oAbeta$ prevents subsequent rounds of plasticity from inducing CaMKII T286 autophosphorylation,as well as the associated anchoring and accumulation of synaptic AMPA receptors (AMPARs). Finally,prolonged oAbeta$ treatment-induced CaMKII misactivation leads to dendritic spine loss via the destabilization of surface AMPARs. Thus,our study demonstrates that oAbeta$ engages synaptic metaplasticity via aberrant CaMKII activation.
View Publication
A. Odawara et al. (JUL 2018)
Scientific reports 8 1 10416
Toxicological evaluation of convulsant and anticonvulsant drugs in human induced pluripotent stem cell-derived cortical neuronal networks using an MEA system.
Functional evaluation assays using human induced pluripotent stem cell (hiPSC)-derived neurons can predict the convulsion toxicity of new drugs and the neurological effects of antiepileptic drugs. However,differences in responsiveness depending on convulsant type and antiepileptic drugs,and an evaluation index capable of comparing in vitro responses with in vivo responses are not well known. We observed the difference in synchronized burst patterns in the epileptiform activities induced by pentylentetrazole (PTZ) and 4-aminopryridine (4-AP) with different action mechanisms using multi-electrode arrays (MEAs); we also observed that 100 µM of the antiepileptic drug phenytoin suppressed epileptiform activities induced by PTZ,but increased those induced by 4-AP. To compare in vitro results with in vivo convulsive responses,frequency analysis of below 250 Hz,excluding the spike component,was performed. The in vivo convulsive firing enhancement of the high gamma$ wave and beta$ wave component were observed remarkably in in vitro hiPSC-derived neurons with astrocytes in co-culture. MEA measurement of hiPSC-derived neurons in co-culture with astrocytes and our analysis methods,including frequency analysis,appear effective for predicting convulsion toxicity,side effects,and their mechanism of action as well as the comparison of convulsions induced in vivo.
View Publication
D. R. McHugh et al. ( 2018)
PloS one 13 6 e0199573
A G542X cystic fibrosis mouse model for examining nonsense mutation directed therapies.
Nonsense mutations are present in 10{\%} of patients with CF,produce a premature termination codon in CFTR mRNA causing early termination of translation,and lead to lack of CFTR function. There are no currently available animal models which contain a nonsense mutation in the endogenous Cftr locus that can be utilized to test nonsense mutation therapies. In this study,we create a CF mouse model carrying the G542X nonsense mutation in Cftr using CRISPR/Cas9 gene editing. The G542X mouse model has reduced Cftr mRNA levels,demonstrates absence of CFTR function,and displays characteristic manifestations of CF mice such as reduced growth and intestinal obstruction. Importantly,CFTR restoration is observed in G542X intestinal organoids treated with G418,an aminoglycoside with translational readthrough capabilities. The G542X mouse model provides an invaluable resource for the identification of potential therapies of CF nonsense mutations as well as the assessment of in vivo effectiveness of these potential therapies targeting nonsense mutations.
View Publication
G. E. Martyn et al. (APR 2018)
Nature genetics 50 4 498--503
Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding.
$\beta$-hemoglobinopathies such as sickle cell disease (SCD) and $\beta$-thalassemia result from mutations in the adult HBB ($\beta$-globin) gene. Reactivating the developmentally silenced fetal HBG1 and HBG2 ($\gamma$-globin) genes is a therapeutic goal for treating SCD and $\beta$-thalassemia 1 . Some forms of hereditary persistence of fetal hemoglobin (HPFH),a rare benign condition in which individuals express the $\gamma$-globin gene throughout adulthood,are caused by point mutations in the $\gamma$-globin gene promoter at regions residing {\~{}}115 and 200 bp upstream of the transcription start site. We found that the major fetal globin gene repressors BCL11A and ZBTB7A (also known as LRF) directly bound to the sites at -115 and -200 bp,respectively. Furthermore,introduction of naturally occurring HPFH-associated mutations into erythroid cells by CRISPR-Cas9 disrupted repressor binding and raised $\gamma$-globin gene expression. These findings clarify how these HPFH-associated mutations operate and demonstrate that BCL11A and ZBTB7A are major direct repressors of the fetal globin gene.
View Publication