E. R. Zacca et al. ( 2018)
Frontiers in immunology 9 2241
PD-L1+ Regulatory B Cells Are Significantly Decreased in Rheumatoid Arthritis Patients and Increase After Successful Treatment.
Background: B cells play an important role in the development and maintenance of rheumatoid arthritis (RA). Although IL-10-producing B cells represent a major subset of regulatory B cells (Bregs) able to suppress autoimmune and inflammatory responses,recent reports showed that B cell-mediated immune suppression may also occur independent of IL-10. For instance,B cells can modulate T cell immune responses through the expression of regulatory molecules such as PD-L1. So far,PD-L1-expressing B cells have not been analyzed in RA patients. Objective: To analyze the frequency of PD-L1-expressing B cells in the peripheral blood of RA patients compared to healthy controls (HC) matched for sex and age,their function on T cell response and their changes in response to therapy. Methods: Fresh peripheral blood B cells from RA patients and HC were characterized by flow cytometry and their functionality assessed in a co-culture system with autologous T cells. Results: The frequencies of CD19+PD-L1+ B cells,CD24hiCD38-PD-L1+ and CD24hiCD38hiPD-L1+ B cells were significantly lower in untreated RA patients than in HC. In a follow-up study,the frequencies of PD-L1+ B cells (CD19+PD-L1+ B cells,CD24hiCD38-PD-L1+ and CD24hiCD38hiPD-L1+ B cells) increased significantly after treatment in good responder patients,although the frequency of total CD24hiCD38hi B cells decreased. CD19+ B cells from untreated RA patients and HC upregulated PD-L1 expression similarly upon stimulation with CpG plus IL-2 and were able to suppress,in vitro,CD8+ T cell proliferation and cytokine production in a PD-L1-dependent manner. Conclusions: Our results show that PD-L1+ B cells exhibiting T cell suppressive capacity are significantly decreased in untreated RA patients but increase in response to successful treatment. PD-L1 expression on B cells from RA patients can be modulated in vitro and PD-L1+ B cells could thus provide new perspectives for future treatment strategies.
View Publication
文献
C. A. Egelston et al. (OCT 2018)
Nature communications 9 1 4297
Human breast tumor-infiltrating CD8+ T cells retain polyfunctionality despite PD-1 expression.
Functional CD8+ T cells in human tumors play a clear role in clinical prognosis and response to immunotherapeutic interventions. PD-1 expression in T cells involved in chronic infections and tumors such as melanoma often correlates with a state of T-cell exhaustion. Here we interrogate CD8+ tumor-infiltrating lymphocytes (TILs) from human breast and melanoma tumors to explore their functional state. Despite expression of exhaustion hallmarks,such as PD-1 expression,human breast tumor CD8+ TILs retain robust capacity for production of effector cytokines and degranulation capacity. In contrast,melanoma CD8+ TILs display dramatic reduction of cytokine production and degranulation capacity. We show that CD8+ TILs from human breast tumors can potently kill cancer cells via bi-specific antibodies. Our data demonstrate that CD8+ TILs in human breast tumors retain polyfunctionality,despite PD-1 expression,and suggest that they may be harnessed for effective immunotherapies.
View Publication
文献
Y. Otsuka et al. (NOV 2018)
Journal of immunology (Baltimore,Md. : 1950) 201 10 3006--3016
Differentiation of Langerhans Cells from Monocytes and Their Specific Function in Inducing IL-22-Specific Th Cells.
Human mucosal tissues and skin contain two distinct types of dendritic cell (DC) subsets,epidermal Langerhans cells (LCs) and dermal DCs,which can be distinguished by the expression of C-type lectin receptors,Langerin and DC-SIGN,respectively. Although peripheral blood monocytes differentiate into these distinct subsets,monocyte-derived LCs (moLCs) induced by coculture with GM-CSF,IL-4,and TGF-$\beta$1 coexpress both Langerin and DC-SIGN,suggesting that the environmental cues remain unclear. In this study,we show that LC differentiation is TGF-$\beta$1 dependent and that cofactors such as IL-4 and TNF-$\alpha$ promote TGF-$\beta$1-dependent LC differentiation into Langerin+DC-SIGN- moLCs but continuous exposure to IL-4 blocks differentiation. Steroids such as dexamethasone greatly enhanced TNF-$\alpha$-induced moLC differentiation and blocked DC-SIGN expression. Consistent with primary LCs,dexamethasone-treated moLCs express CD1a,whereas monocyte-derived DCs (moDCs) express CD1b,CD1c,and CD1d. moDCs but not moLCs produced inflammatory cytokines after stimulation with CD1b and CD1d ligands mycolic acid and $\alpha$-galactosylceramide,respectively. Strikingly,CD1a triggering with squalene on moLCs but not moDCs induced strong IL-22-producing CD4+ helper T cell responses. As IL-22 is an important cytokine in the maintenance of skin homeostasis,these data suggest that CD1a on LCs is involved in maintaining the immune barrier in the skin.
View Publication
文献
S. Belluschi et al. ( 2018)
Nature communications 9 1 4100
Myelo-lymphoid lineage restriction occurs in the human haematopoietic stem cell compartment before lymphoid-primed multipotent progenitors.
Capturing where and how multipotency is lost is crucial to understand how blood formation is controlled. Blood lineage specification is currently thought to occur downstream of multipotent haematopoietic stem cells (HSC). Here we show that,in human,the first lineage restriction events occur within the CD19-CD34+CD38-CD45RA-CD49f+CD90+ (49f+) HSC compartment to generate myelo-lymphoid committed cells with no erythroid differentiation capacity. At single-cell resolution,we observe a continuous but polarised organisation of the 49f+ compartment,where transcriptional programmes and lineage potential progressively change along a gradient of opposing cell surface expression of CLEC9A and CD34. CLEC9AhiCD34lo cells contain long-term repopulating multipotent HSCs with slow quiescence exit kinetics,whereas CLEC9AloCD34hi cells are restricted to myelo-lymphoid differentiation and display infrequent but durable repopulation capacity. We thus propose that human HSCs gradually transition to a discrete lymphoid-primed state,distinct from lymphoid-primed multipotent progenitors,representing the earliest entry point into lymphoid commitment.
View Publication
文献
M. Baliu-Piqu\'e et al. ( 2018)
Frontiers in immunology 9 2054
Short Lifespans of Memory T-cells in Bone Marrow, Blood, and Lymph Nodes Suggest That T-cell Memory Is Maintained by Continuous Self-Renewal of Recirculating Cells.
Memory T-cells are essential to maintain long-term immunological memory. It is widely thought that the bone marrow (BM) plays an important role in the long-term maintenance of memory T-cells. There is controversy however on the longevity and recirculating kinetics of BM memory T-cells. While some have proposed that the BM is a reservoir for long-lived,non-circulating memory T-cells,it has also been suggested to be the preferential site for memory T-cell self-renewal. In this study,we used in vivo deuterium labeling in goats to simultaneously quantify the average turnover rates-and thereby expected lifespans-of memory T-cells from BM,blood and lymph nodes (LN). While the fraction of Ki-67 positive cells,a snapshot marker for recent cell division,was higher in memory T-cells from blood compared to BM and LN,in vivo deuterium labeling revealed no substantial differences in the expected lifespans of memory T-cells between these compartments. Our results support the view that the majority of memory T-cells in the BM are self-renewing as fast as those in the periphery,and are continuously recirculating between the blood,BM,and LN.
View Publication
文献
S. Korniotis et al. ( 2018)
Frontiers in immunology 9 2007
Hematopoietic Stem/Progenitor Cell Dependent Participation of Innate Lymphoid Cells in Low-Intensity Sterile Inflammation.
Hematopoietic stem/progenitor cells (HSPC) are characterized by their unique capacities of self-renewal and multi-differentiation potential. This second property makes them able to adapt their differentiation profile depending on the local environment they reach. Taking advantage of an animal model of peritonitis,induced by injection of the TLR-2 ligand,zymosan,we sought to study the relationship between bone marrow-derived hematopoietic stem/progenitor cells (BM-HSPCs) and innate lymphoid cells (ILCs) regarding their emergence and differentiation at the site of inflammation. Our results demonstrate that the strength of the inflammatory signals affects the capacity of BM-derived HSPCs to migrate and give rise in situ to ILCs. Both low- and high-dose of zymosan injections trigger the appearance of mature ILCs in the peritoneal cavity where the inflammation occurs. Herein,we show that only in low-dose injected mice,the recovered ILCs are dependent on an in situ differentiation of BM-derived HSPCs and/or ILC2 precursors (ILC2P) wherein high-dose,the stronger inflammatory environment seems to be able to induce the emergence of ILCs independently of BM-derived HSPCs. We suggest that a relationship between HSPCs and ILCs seems to be affected by the strength of the inflammatory stimuli opening new perspectives in the manipulation of these early hematopoietic cells.
View Publication
文献
T. J. Bussian et al. (SEP 2018)
Nature
Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline.
Cellular senescence,which is characterized by an irreversible cell-cycle arrest1 accompanied by a distinctive secretory phenotype2,can be induced through various intracellular and extracellular factors. Senescent cells that express the cell cycle inhibitory protein p16INK4A have been found to actively drive naturally occurring age-related tissue deterioration3,4 and contribute to several diseases associated with ageing,including atherosclerosis5 and osteoarthritis6. Various markers of senescence have been observed in patients with neurodegenerative diseases7-9; however,a role for senescent cells in the aetiology of these pathologies is unknown. Here we show a causal link between the accumulation of senescent cells and cognition-associated neuronal loss. We found that the MAPTP301SPS19 mouse model of tau-dependent neurodegenerative disease10 accumulates p16INK4A-positive senescent astrocytes and microglia. Clearance of these cells as they arise using INK-ATTAC transgenic mice prevents gliosis,hyperphosphorylation of both soluble and insoluble tau leading to neurofibrillary tangle deposition,and degeneration of cortical and hippocampal neurons,thus preserving cognitive function. Pharmacological intervention with a first-generation senolytic modulates tau aggregation. Collectively,these results show that senescent cells have a role in the initiation and progression of tau-mediated disease,and suggest that targeting senescent cells may provide a therapeutic avenue for the treatment of these pathologies.
View Publication
文献
L. Cao et al. (SEP 2018)
Nature communications 9 1 3693
Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer.
As the sole target of broadly neutralizing antibodies (bnAbs) to HIV,the envelope glycoprotein (Env) trimer is the focus of vaccination strategies designed to elicit protective bnAbs in humans. Because HIV Env is densely glycosylated with 75-90 N-glycans per trimer,most bnAbs use or accommodate them in their binding epitope,making the glycosylation of recombinant Env a key aspect of HIV vaccine design. Upon analysis of three HIV strains,we here find that site-specific glycosylation of Env from infectious virus closely matches Envs from corresponding recombinant membrane-bound trimers. However,viral Envs differ significantly from recombinant soluble,cleaved (SOSIP) Env trimers,strongly impacting antigenicity. These results provide a benchmark for virus Env glycosylation needed for the design of soluble Env trimers as part of an overall HIV vaccine strategy.
View Publication
文献
C. Petes et al. (SEP 2018)
Scientific Reports 8 1 13704
IL-27 amplifies cytokine responses to Gram-negative bacterial products and Salmonella typhimurium infection.
Cytokine responses from monocytes and macrophages exposed to bacteria are of particular importance in innate immunity. Focusing on the impact of the immunoregulatory cytokine interleukin (IL)-27 on control of innate immune system responses,we examined human immune responses to bacterial products and bacterial infection by E. coli and S. typhimurium. Since the effect of IL-27 treatment in human myeloid cells infected with bacteria is understudied,we treated human monocytes and macrophages with IL-27 and either LPS,flagellin,or bacteria,to investigate the effect on inflammatory signaling and cytokine responses. We determined that simultaneous stimulation with IL-27 and LPS derived from E. coli or S. typhimurium resulted in enhanced IL-12p40,TNF-$\alpha$,and IL-6 expression compared to that by LPS alone. To elucidate if IL-27 manipulated the cellular response to infection with bacteria,we infected IL-27 treated human macrophages with S. typhimurium. While IL-27 did not affect susceptibility to S. typhimurium infection or S. typhimurium-induced cell death,IL-27 significantly enhanced proinflammatory cytokine production in infected cells. Taken together,we highlight a role for IL-27 in modulating innate immune responses to bacterial infection.
View Publication
文献
Y. P. Zhu et al. (AUG 2018)
Cell reports 24 9 2329--2341.e8
Identification of an Early Unipotent Neutrophil Progenitor with Pro-tumoral Activity in Mouse and Human Bone Marrow.
Neutrophils are short-lived cells that play important roles in both health and disease. Neutrophils and monocytes originate from the granulocyte monocyte progenitor (GMP) in bone marrow; however,unipotent neutrophil progenitors are not well defined. Here,we use cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) methodologies to identify a committed unipotent early-stage neutrophil progenitor (NeP) in adult mouse bone marrow. Importantly,we found a similar unipotent NeP (hNeP) in human bone marrow. Both NeP and hNeP generate only neutrophils. NeP and hNeP both significantly increase tumor growth when transferred into murine cancer models,including a humanized mouse model. hNeP are present in the blood of treatment-naive melanoma patients but not of healthy subjects. hNeP can be readily identified by flow cytometry and could be used as a biomarker for early cancer discovery. Understanding the biology of hNeP should allow the development of new therapeutic targets for neutrophil-related diseases,including cancer.
View Publication
文献
L. Fang et al. (JUL 2018)
Cancer cell 34 1 103--118.e9
SET1A-Mediated Mono-Methylation at K342 Regulates YAP Activation by Blocking Its Nuclear Export and Promotes Tumorigenesis.
YAP,a key effector of Hippo pathway,is activated by its translocation from cytoplasm to nucleus to regulate gene expression and promote tumorigenesis. Although the mechanism by which YAP is suppressed in cytoplasm has been well-studied,how the activated YAP is sequestered in the nucleus remains unknown. Here,we demonstrate that YAP is a nucleocytoplasmic shuttling protein and its nuclear export is controlled by SET1A-mediated mono-methylation of YAP at K342,which disrupts the binding of YAP to CRM1. YAP mimetic methylation knockin mice are more susceptible to colorectal tumorigenesis. Clinically,YAP K342 methylation is reversely correlated with cancer survival. Collectively,our study identifies SET1A-mediated mono-methylation at K342 as an essential regulatory mechanism for regulating YAP activity and tumorigenesis.
View Publication
文献
C. A. Hamilton et al. ( 2018)
Veterinary research 49 1 54
Development of in vitro enteroids derived from bovine small intestinal crypts.
Cattle are an economically important domestic animal species. In vitro 2D cultures of intestinal epithelial cells or epithelial cell lines have been widely used to study cell function and host-pathogen interactions in the bovine intestine. However,these cultures lack the cellular diversity encountered in the intestinal epithelium,and the physiological relevance of monocultures of transformed cell lines is uncertain. Little is also known of the factors that influence cell differentiation and homeostasis in the bovine intestinal epithelium,and few cell-specific markers that can distinguish the different intestinal epithelial cell lineages have been reported. Here we describe a simple and reliable procedure to establish in vitro 3D enteroid,or mini gut" cultures from bovine small intestinal (ileal) crypts. These enteroids contained a continuous central lumen lined with a single layer of polarized enterocytes bound by tight junctions with abundant microvilli on their apical surfaces. Histological and transcriptional analyses suggested that the enteroids comprised a mixed population of intestinal epithelial cell lineages including intestinal stem cells enterocytes Paneth cells goblet cells and enteroendocrine cells. We show that bovine enteroids can be successfully maintained long-term through multiple serial passages without observable changes to their growth characteristics morphology or transcriptome. Furthermore the bovine enteroids can be cryopreserved and viable cultures recovered from frozen stocks. Our data suggest that these 3D bovine enteroid cultures represent a novel physiologically-relevant and tractable in vitro system in which epithelial cell differentiation and function and host-pathogen interactions in the bovine small intestine can be studied."
View Publication