Q. Haas et al. ( 2019)
Cancer immunology research 7 5 707--718
Siglec-9 Regulates an Effector Memory CD8+ T-cell Subset That Congregates in the Melanoma Tumor Microenvironment.
Emerging evidence suggests an immunosuppressive role of altered tumor glycosylation due to downregulation of innate immune responses via immunoregulatory Siglecs. In contrast,human T cells,a major anticancer effector cell,only rarely express Siglecs. However,here,we report that the majority of intratumoral,but not peripheral blood,cytotoxic CD8+ T cells expressed Siglec-9 in melanoma. We identified Siglec-9+ CD8+ T cells as a subset of effector memory cells with high functional capacity and signatures of clonal expansion. This cytotoxic T-cell subset was functionally inhibited in the presence of Siglec-9 ligands or by Siglec-9 engagement by specific antibodies. TCR signaling pathways and key effector functions (cytotoxicity,cytokine production) of CD8+ T cells were suppressed by Siglec-9 engagement,which was associated with the phosphorylation of the inhibitory protein tyrosine phosphatase SHP-1,but not SHP-2. Expression of cognate Siglec-9 ligands was observed on the majority of tumor cells in primary and metastatic melanoma specimens. Targeting the tumor-restricted,glycosylation-dependent Siglec-9 axis may unleash this intratumoral T-cell subset,while confining T-cell activation to the tumor microenvironment.
View Publication
文献
C. Gu et al. (jul 2019)
Journal of immunology (Baltimore,Md. : 1950) 203 2 389--399
Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation.
The types and magnitude of Ag-specific immune responses can be determined by the functional plasticity of dendritic cells (DCs). However,how DCs display functional plasticity and control host immune responses have not been fully understood. In this study,we report that ligation of DC-asialoglycoprotein receptor (DC-ASGPR),a C-type lectin receptor (CLR) expressed on human DCs,resulted in rapid activation of Syk,followed by PLCgamma2 and PKCdelta engagements. However,different from other Syk-coupled CLRs,including Dectin-1,signaling cascade through DC-ASGPR did not trigger NF-kappaB activation. Instead,it selectively activated MAPK ERK1/2 and JNK. Rapid and prolonged phosphorylation of ERK1/2 led to sequential activation of p90RSK and CREB,which consequently bound to IL10 promoter and initiated cytokine expression. In addition,DC-ASGPR ligation activated Akt,which differentially regulated the activities of GSK-3alpha/beta and beta-catenin and further contributed to IL-10 expression. Our observations demonstrate that DC-ASGPR induces IL-10 expression via an intrinsic signaling pathway,which provides a molecular explanation for DC-ASGPR-mediated programing of DCs to control host immune responses.
View Publication
文献
E. Giuliani et al. (mar 2019)
Scientific reports 9 1 4373
Hexamethylene bisacetamide impairs NK cell-mediated clearance of acute T lymphoblastic leukemia cells and HIV-1-infected T cells that exit viral latency.
The hexamethylene bisacetamide (HMBA) anticancer drug was dismissed due to limited efficacy in leukemic patients but it may re-enter into the clinics in HIV-1 eradication strategies because of its recently disclosed capacity to reactivate latent virus. Here,we investigated the impact of HMBA on the cytotoxicity of natural killer (NK) cells against acute T lymphoblastic leukemia (T-ALL) cells or HIV-1-infected T cells that exit from latency. We show that in T-ALL cells HMBA upmodulated MICB and ULBP2 ligands for the NKG2D activating receptor. In a primary CD4+ T cell-based latency model,HMBA did not reactivate HIV-1,yet enhanced ULBP2 expression on cells harboring virus reactivated by prostratin (PRO). However,HMBA reduced the expression of NKG2D and its DAP10 adaptor in NK cells,hence impairing NKG2D-mediated cytotoxicity and DAP10-dependent response to IL-15 stimulation. Alongside,HMBA dampened killing of T-ALL targets by IL-15-activated NK cells and impaired NK cell-mediated clearance of PRO-reactivated HIV-1+ cells. Overall,our results demonstrate a dominant detrimental effect of HMBA on the NKG2D pathway that crucially controls NK cell-mediated killing of tumors and virus-infected cells,providing one possible explanation for poor clinical outcome in HMBA-treated cancer patients and raising concerns for future therapeutic application of this drug.
View Publication
文献
D. Gerace et al. ( 2019)
Methods in molecular biology (Clifton,N.J.) 2029 197--214
Lentiviral vectors are the method of choice for stable gene modification of a variety of cell types. However,the efficiency with which they transduce target cells varies significantly,in particular their typically poor capacity to transduce primary stem cells. Here we describe the isolation and enrichment of murine bone-marrow mesenchymal stem cells (MSCs) via fluorescence-activated cell sorting (FACS); the cloning,production,and concentration of high-titer second generation lentiviral vectors via combined tangential flow filtration (TFF) and ultracentrifugation; and the subsequent high-efficiency gene modification of MSCs into insulin-producing cells via overexpression of the furin-cleavable human insulin (INS-FUR) gene.
View Publication
文献
Y. Ganor et al. (feb 2019)
Nature microbiology
HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy.
Human immunodeficiency virus type 1 (HIV-1) eradication is prevented by the establishment on infection of cellular HIV-1 reservoirs that are not fully characterized,especially in genital mucosal tissues (the main HIV-1 entry portal on sexual transmission). Here,we show,using penile tissues from HIV-1-infected individuals under suppressive combination antiretroviral therapy,that urethral macrophages contain integrated HIV-1 DNA,RNA,proteins and intact virions in virus-containing compartment-like structures,whereas viral components remain undetectable in urethral T cells. Moreover,urethral cells specifically release replication-competent infectious HIV-1 following reactivation with the macrophage activator lipopolysaccharide,while the T-cell activator phytohaemagglutinin is ineffective. HIV-1 urethral reservoirs localize preferentially in a subset of polarized macrophages that highly expresses the interleukin-1 receptor,CD206 and interleukin-4 receptor,but not CD163. To our knowledge,these results are the first evidence that human urethral tissue macrophages constitute a principal HIV-1 reservoir. Such findings are determinant for therapeutic strategies aimed at HIV-1 eradication.
View Publication
文献
B. J. Frisch et al. (apr 2019)
JCI insight 5
Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B.
The bone marrow microenvironment (BMME) contributes to the regulation of hematopoietic stem cell (HSC) function,though its role in age-associated lineage skewing is poorly understood. Here we show that dysfunction of aged marrow macrophages (Mphis) directs HSC platelet-bias. Mphis from the marrow of aged mice and humans exhibited an activated phenotype,with increased expression of inflammatory signals. Aged marrow Mphis also displayed decreased phagocytic function. Senescent neutrophils,typically cleared by marrow Mphis,were markedly increased in aged mice,consistent with functional defects in Mphi phagocytosis and efferocytosis. In aged mice,Interleukin 1B (IL1B) was elevated in the bone marrow and caspase 1 activity,which can process pro-IL1B,was increased in marrow Mphis and neutrophils. Mechanistically,IL1B signaling was necessary and sufficient to induce a platelet bias in HSCs. In young mice,depletion of phagocytic cell populations or loss of the efferocytic receptor Axl expanded platelet-biased HSCs. Our data support a model wherein increased inflammatory signals and decreased phagocytic function of aged marrow Mphis induce the acquisition of platelet bias in aged HSCs. This work highlights the instructive role of Mphis and IL1B in the age-associated lineage-skewing of HSCs,and reveals the therapeutic potential of their manipulation as antigeronic targets.
View Publication
文献
B. Fregin et al. ( 2019)
Nature communications 10 1 415
High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry.
In life sciences,the material properties of suspended cells have attained significance close to that of fluorescent markers but with the advantage of label-free and unbiased sample characterization. Until recently,cell rheological measurements were either limited by acquisition throughput,excessive post processing,or low-throughput real-time analysis. Real-time deformability cytometry expanded the application of mechanical cell assays to fast on-the-fly phenotyping of large sample sizes,but has been restricted to single material parameters as the Young's modulus. Here,we introduce dynamic real-time deformability cytometry for comprehensive cell rheological measurements at up to 100 cells per second. Utilizing Fourier decomposition,our microfluidic method is able to disentangle cell response to complex hydrodynamic stress distributions and to determine viscoelastic parameters independent of cell shape. We demonstrate the application of our technology for peripheral blood cells in whole blood samples including the discrimination of B- and CD4+ T-lymphocytes by cell rheological properties.
View Publication
文献
M. Epeldegui et al. (jun 2019)
Scientific reports 9 1 9371
Elevated numbers of PD-L1 expressing B cells are associated with the development of AIDS-NHL.
The risk for non-Hodgkin lymphoma (NHL) is markedly increased in persons living with human immunodeficiency virus (HIV) infection,and remains elevated in those on anti-retroviral therapy (cART). Both the loss of immunoregulation of Epstein-Barr virus (EBV) infected cells,as well as chronic B-cell activation,are believed to contribute to the genesis of AIDS-related NHL (AIDS-NHL). However,the mechanisms that lead to AIDS-NHL have not been completely defined. A subset of B cells that is characterized by the secretion of IL10,as well as the expression of the programmed cell death ligand-1 (PD-L1/CD274),was recently described. These PD-L1+ B cells can exert regulatory function,including the dampening of T-cell activation,by interacting with the program cell death protein (PD1) on target cells. The role of PD-L1+ B cells in the development of AIDS-NHL has not been explored. We assessed B cell PD-L1 expression on B cells preceding AIDS-NHL diagnosis in a nested case-control study of HIV+ subjects who went on to develop AIDS-NHL,as well as HIV+ subjects who did not,using multi-color flow cytometry. Archival frozen viable PBMC were obtained from the UCLA Multicenter AIDS Cohort Study (MACS). It was seen that the number of CD19+CD24++CD38++and CD19+PD-L1+cells was significantly elevated in cases 1-4 years prior to AIDS-NHL diagnosis,compared to controls,raising the possibility that these cells may play a role in the etiology of AIDS-NHL. Interestingly,most PD-L1+ expression on CD19+ cells was seen on CD19+CD24++CD38++ cells. In addition,we showed that HIV can directly induce PD-L1 expression on B cells through interaction of virion-associated CD40L with CD40 on B cells.
View Publication
文献
A. C. Engevik et al. ( 2018)
Gastroenterology 155 6 1883--1897.e10
Loss of MYO5B Leads to Reductions in Na+ Absorption With Maintenance of CFTR-Dependent Cl- Secretion in Enterocytes.
BACKGROUND AIMS Inactivating mutations in MYO5B cause microvillus inclusion disease (MVID),but the physiological cause of the diarrhea associated with this disease is unclear. We investigated whether loss of MYO5B results in aberrant expression of apical enterocyte transporters. METHODS We studied alterations in apical membrane transporters in MYO5B-knockout mice,as well as mice with tamoxifen-inducible,intestine-specific disruption of Myo5b (VilCreERT2;Myo5bflox/flox mice) or those not given tamoxifen (controls). Intestinal tissues were collected from mice and analyzed by immunostaining,immunoelectron microscopy,or cultured enteroids were derived. Functions of brush border transporters in intestinal mucosa were measured in Ussing chambers. We obtained duodenal biopsy specimens from individuals with MVID and individuals without MVID (controls) and compared transporter distribution by immunocytochemistry. RESULTS Compared to intestinal tissues from littermate controls,intestinal tissues from MYO5B-knockout mice had decreased apical localization of SLC9A3 (also called NHE3),SLC5A1 (also called SGLT1),aquaporin (AQP) 7,and sucrase isomaltase,and subapical localization of intestinal alkaline phosphatase and CDC42. However,CFTR was present on apical membranes of enterocytes from MYO5B knockout and control mice. Intestinal biopsies from patients with MVID had subapical localization of NHE3,SGLT1,and AQP7,but maintained apical CFTR. After tamoxifen administration,VilCreERT2;Myo5bflox/flox mice lost apical NHE3,SGLT1,DRA,and AQP7,similar to germline MYO5B knockout mice. Intestinal tissues from VilCreERT2;Myo5bflox/flox mice had increased CFTR in crypts and CFTR localized to the apical membranes of enterocytes. Intestinal mucosa from VilCreERT2;Myo5bflox/flox mice given tamoxifen did not have an intestinal barrier defect,based on Ussing chamber analysis,but did have decreased SGLT1 activity and increased CFTR activity. CONCLUSIONS Although trafficking of many apical transporters is regulated by MYO5B,trafficking of CFTR is largely independent of MYO5B. Decreased apical localization of NHE3,SGLT1,DRA,and AQP7 might be responsible for dysfunctional water absorption in enterocytes of patients with MVID. Maintenance of apical CFTR might exacerbate water loss by active secretion of chloride into the intestinal lumen.
View Publication
文献
R. M. Eichenberger et al. ( 2018)
Frontiers in immunology 9 850
Hookworm Secreted Extracellular Vesicles Interact With Host Cells and Prevent Inducible Colitis in Mice.
Gastrointestinal (GI) parasites,hookworms in particular,have evolved to cause minimal harm to their hosts,allowing them to establish chronic infections. This is mediated by creating an immunoregulatory environment. Indeed,hookworms are such potent suppressors of inflammation that they have been used in clinical trials to treat inflammatory bowel diseases (IBD) and celiac disease. Since the recent description of helminths (worms) secreting extracellular vesicles (EVs),exosome-like EVs from different helminths have been characterized and their salient roles in parasite-host interactions have been highlighted. Here,we analyze EVs from the rodent parasite Nippostrongylus brasiliensis,which has been used as a model for human hookworm infection. N. brasiliensis EVs (Nb-EVs) are actively internalized by mouse gut organoids,indicating a role in driving parasitism. We used proteomics and RNA-Seq to profile the molecular composition of Nb-EVs. We identified 81 proteins,including proteins frequently present in exosomes (like tetraspanin,enolase,14-3-3 protein,and heat shock proteins),and 27 sperm-coating protein-like extracellular proteins. RNA-Seq analysis revealed 52 miRNA species,many of which putatively map to mouse genes involved in regulation of inflammation. To determine whether GI nematode EVs had immunomodulatory properties,we assessed their potential to suppress GI inflammation in a mouse model of inducible chemical colitis. EVs from N. brasiliensis but not those from the whipworm Trichuris muris or control vesicles from grapes protected against colitic inflammation in the gut of mice that received a single intraperitoneal injection of EVs. Key cytokines associated with colitic pathology (IL-6,IL-1$\beta$,IFN$\gamma$,and IL-17a) were significantly suppressed in colon tissues from EV-treated mice. By contrast,high levels of the anti-inflammatory cytokine IL-10 were detected in Nb-EV-treated mice. Proteins and miRNAs contained within helminth EVs hold great potential application in development of drugs to treat helminth infections as well as chronic non-infectious diseases resulting from a dysregulated immune system,such as IBD.
View Publication
文献
E. Drent et al. (jul 2019)
Clinical cancer research : an official journal of the American Association for Cancer Research 25 13 4014--4025
Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor-engineered T Cells.
PURPOSE Targeting nonspecific,tumor-associated antigens (TAA) with chimeric antigen receptors (CAR) requires specific attention to restrict possible detrimental on-target/off-tumor effects. A reduced affinity may direct CAR-engineered T (CAR-T) cells to tumor cells expressing high TAA levels while sparing low expressing normal tissues. However,decreasing the affinity of the CAR-target binding may compromise the overall antitumor effects. Here,we demonstrate the prime importance of the type of intracellular signaling on the function of low-affinity CAR-T cells. EXPERIMENTAL DESIGN We used a series of single-chain variable fragments (scFv) with five different affinities targeting the same epitope of the multiple myeloma-associated CD38 antigen. The scFvs were incorporated in three different CAR costimulation designs and we evaluated the antitumor functionality and off-tumor toxicity of the generated CAR-T cells in vitro and in vivo. RESULTS We show that the inferior cytotoxicity and cytokine secretion mediated by CD38 CARs of very low-affinity (Kd {\textless} 1.9 × 10-6 mol/L) bearing a 4-1BB intracellular domain can be significantly improved when a CD28 costimulatory domain is used. Additional 4-1BB signaling mediated by the coexpression of 4-1BBL provided the CD28-based CD38 CAR-T cells with superior proliferative capacity,preservation of a central memory phenotype,and significantly improved in vivo antitumor function,while preserving their ability to discriminate target antigen density. CONCLUSIONS A combinatorial costimulatory design allows the use of very low-affinity binding domains (Kd {\textless} 1 mumol/L) for the construction of safe but also optimally effective CAR-T cells. Thus,very-low-affinity scFvs empowered by selected costimulatory elements can enhance the clinical potential of TAA-targeting CARs.
View Publication
文献
X. Dong et al. (mar 2019)
Cellular molecular immunology
ACPAs promote IL-1beta production in rheumatoid arthritis by activating the NLRP3 inflammasome.
OBJECTIVES Anti-citrullinated protein antibodies (ACPAs) are a group of autoantibodies targeted against citrullinated proteins/peptides and are informative rheumatoid arthritis (RA) biomarkers. ACPAs also play a crucial role in RA pathogenesis,and their underlying mechanism merits investigation. METHODS Immunohistochemical (IHC) assays were carried out to determine IL-1beta levels in ACPA+ and ACPA- RA patients. PBMC-derived monocytes were differentiated into macrophages before stimulation with ACPAs purified from RA patients. The localization and interaction of molecules were analyzed by confocal microscopy,co-IP,and surface plasmon resonance. RESULTS In our study,we found that IL-1beta levels were elevated in ACPA+ RA patients and that ACPAs promoted IL-1beta production by PBMC-derived macrophages. ACPAs interacted with CD147 to enhance the interaction between CD147 and integrin beta1 and,in turn,activate the Akt/NF-kappaB signaling pathway. The nuclear localization of p65 promoted the expression of NLRP3 and pro-IL-1beta,resulting in priming. Moreover,ACPA stimulation activated pannexin channels,leading to ATP release. The accumulated ATP bound to the P2X7 receptor,leading to NLRP3 inflammasome activation. CONCLUSIONS Our study suggests a new hypothesis regarding IL-1beta production in RA involving ACPAs,which may be a potential therapeutic target in RA treatment.
View Publication