技术资料
-
F. Qian et al. (may 2022) FASEB journal : official publication of the Federation of American Societies for Experimental Biology 36 5 e22328Interleukin-4 treatment reduces leukemia burden in acute myeloid leukemia.
Interleukin-4 (IL-4) is a signature cytokine pivotal in Type 2 helper T cell (Th2) immune response,particularly in allergy and hypersensitivity. Interestingly,IL-4 increases endogenous levels of prostaglandin D2 (PGD2 ) and its metabolites,$\Delta$12 -prostaglandin J2 ($\Delta$12 -PGJ2 ) and 15-deoxy-$\Delta$12,14 -prostaglandin J2 (15d-PGJ2 ),collectively called cyclopentenone PGs (CyPGs). However,the therapeutic role of IL-4 in hematologic malignancies remains unclear. Here,we employed a murine model of acute myeloid leukemia (AML),where human MLL-AF9 fusion oncoprotein was expressed in hematopoietic progenitor cells,to test the effect of IL-4 treatment in vivo. Daily intraperitoneal treatment with IL-4 at 60 µg/kg/d significantly alleviated the severity of AML,as seen by decreased leukemia-initiating cells (LICs). The effect of IL-4 was mediated,in part,by the enhanced expression of hematopoietic- PGD2 synthase (H-PGDS) to effect endogenous production of CyPGs,through autocrine and paracrine signaling mechanisms. Similar results were seen with patient-derived AML cells cultured ex vivo with IL-4. Use of GW9662,a peroxisome proliferator-activated receptor gamma (PPAR$\gamma$) antagonist,suggested endogenous CyPGs-PPAR$\gamma$ axis mediated p53-dependent apoptosis of LICs by IL-4. Taken together,our results reveal a beneficial role of IL-4 treatment in AML suggesting a potential therapeutic regimen worthy of clinical trials in patients with AML. View Publication -
N. Albinger et al. (apr 2022) Blood cancer journal 12 4 61Primary CD33-targeting CAR-NK cells for the treatment of acute myeloid leukemia.
Acute myeloid leukemia (AML) is a malignant disorder derived from neoplastic myeloid progenitor cells characterized by abnormal proliferation and differentiation. Although novel therapeutics have recently been introduced,AML remains a therapeutic challenge with insufficient cure rates. In the last years,immune-directed therapies such as chimeric antigen receptor (CAR)-T cells were introduced,which showed outstanding clinical activity against B-cell malignancies including acute lymphoblastic leukemia (ALL). However,the application of CAR-T cells appears to be challenging due to the enormous molecular heterogeneity of the disease and potential long-term suppression of hematopoiesis. Here we report on the generation of CD33-targeted CAR-modified natural killer (NK) cells by transduction of blood-derived primary NK cells using baboon envelope pseudotyped lentiviral vectors (BaEV-LVs). Transduced cells displayed stable CAR-expression,unimpeded proliferation,and increased cytotoxic activity against CD33-positive OCI-AML2 and primary AML cells in vitro. Furthermore,CD33-CAR-NK cells strongly reduced leukemic burden and prevented bone marrow engraftment of leukemic cells in OCI-AML2 xenograft mouse models without observable side effects. View Publication -
A. Revenko et al. (apr 2022) Journal for immunotherapy of cancer 10 4Direct targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer.
BACKGROUND The Regulatory T cell (Treg) lineage is defined by the transcription factor FOXP3,which controls immune-suppressive gene expression profiles. Tregs are often recruited in high frequencies to the tumor microenvironment where they can suppress antitumor immunity. We hypothesized that pharmacological inhibition of FOXP3 by systemically delivered,unformulated constrained ethyl-modified antisense oligonucleotides could modulate the activity of Tregs and augment antitumor immunity providing therapeutic benefit in cancer models and potentially in man. METHODS We have identified murine Foxp3 antisense oligonucleotides (ASOs) and clinical candidate human FOXP3 ASO AZD8701. Pharmacology and biological effects of FOXP3 inhibitors on Treg function and antitumor immunity were tested in cultured Tregs and mouse syngeneic tumor models. Experiments were controlled by vehicle and non-targeting control ASO groups as well as by use of multiple independent FOXP3 ASOs. Statistical significance of biological effects was evaluated by one or two-way analysis of variance with multiple comparisons. RESULTS AZD8701 demonstrated a dose-dependent knockdown of FOXP3 in primary Tregs,reduction of suppressive function and efficient target downregulation in humanized mice at clinically relevant doses. Surrogate murine FOXP3 ASO,which efficiently downregulated Foxp3 messenger RNA and protein levels in primary Tregs,reduced Treg suppressive function in immune suppression assays in vitro. FOXP3 ASO promoted more than 70% reduction in FOXP3 levels in Tregs in vitro and in vivo,strongly modulated Treg effector molecules (eg,ICOS,CTLA-4,CD25 and 4-1BB),and augmented CD8+ T cell activation and produced antitumor activity in syngeneic tumor models. The combination of FOXP3 ASOs with immune checkpoint blockade further enhanced antitumor efficacy. CONCLUSIONS Antisense inhibitors of FOXP3 offer a promising novel cancer immunotherapy approach. AZD8701 is being developed clinically as a first-in-class FOXP3 inhibitor for the treatment of cancer currently in Ph1a/b clinical trial (NCT04504669). View Publication -
A. M. Chinn et al. ( 2022) Frontiers in pharmacology 13 833832PDE4B Is a Homeostatic Regulator of Cyclic AMP in Dendritic Cells.
Chronic decreases in the second messenger cyclic AMP (cAMP) occur in numerous settings,but how cells compensate for such decreases is unknown. We have used a unique system-murine dendritic cells (DCs) with a DC-selective depletion of the heterotrimeric GTP binding protein G$\alpha$s-to address this issue. These mice spontaneously develop Th2-allergic asthma and their DCs have persistently lower cAMP levels. We found that phosphodiesterase 4B (PDE4B) is the primary phosphodiesterase expressed in DCs and that its expression is preferentially decreased in G$\alpha$s-depleted DCs. PDE4B expression is dynamic,falling and rising in a protein kinase A-dependent manner with decreased and increased cAMP concentrations,respectively. Treatment of DCs that drive enhanced Th2 immunity with a PDE4B inhibitor ameliorated DC-induced helper T cell response. We conclude that PDE4B is a homeostatic regulator of cellular cAMP concentrations in DCs and may be a target for treating Th2-allergic asthma and other settings with low cellular cAMP concentrations. View Publication -
D. J. Friedman et al. (apr 2022) Journal of immunology (Baltimore,Md. : 1950) 208 8 1845--1850Cutting Edge: Enhanced Antitumor Immunity in ST8Sia6 Knockout Mice.
Inhibitory receptors have a critical role in the regulation of immunity. Siglecs are a family of primarily inhibitory receptors expressed by immune cells that recognize specific sialic acid modifications on cell surface glycans. Many tumors have increased sialic acid incorporation. Overexpression of the sialyltransferase ST8Sia6 on tumors led to altered immune responses and increased tumor growth. In this study,we examined the role of ST8Sia6 on immune cells in regulating antitumor immunity. ST8Sia6 knockout mice had an enhanced immune response to tumors. The loss of ST8Sia6 promoted an enhanced intratumoral activation of macrophages and dendritic cells,including upregulation of CD40. Intratumoral regulatory T cells exhibited a more inflammatory phenotype in ST8Sia6 knockout mice. Using adoptive transfer studies,the change in regulatory T cell phenotype was not cell intrinsic and depended on the loss of ST8Sia6 expression in APCs. Thus,ST8Sia6 generates ligands for Siglecs that dampen antitumor immunity. View Publication -
X. Guan et al. (jun 2022) Nature 606 7915 791--796Androgen receptor activity in T cells limits checkpoint blockade efficacy.
Immune checkpoint blockade has revolutionized the field of oncology,inducing durable anti-tumour immunity in solid tumours. In patients with advanced prostate cancer,immunotherapy treatments have largely failed1-5. Androgen deprivation therapy is classically administered in these patients to inhibit tumour cell growth,and we postulated that this therapy also affects tumour-associated T cells. Here we demonstrate that androgen receptor (AR) blockade sensitizes tumour-bearing hosts to effective checkpoint blockade by directly enhancing CD8 T cell function. Inhibition of AR activity in CD8 T cells prevented T cell exhaustion and improved responsiveness to PD-1 targeted therapy via increased IFN$\gamma$ expression. AR bound directly to Ifng and eviction of AR with a small molecule significantly increased cytokine production in CD8 T cells. Together,our findings establish that T cell intrinsic AR activity represses IFN$\gamma$ expression and represents a novel mechanism of immunotherapy resistance. View Publication -
P. Li et al. (mar 2022) Journal for immunotherapy of cancer 10 31$\alpha$,25(OH)2D3 reverses exhaustion and enhances antitumor immunity of human cytotoxic T cells.
BACKGROUND Epidemiological surveys have revealed that low serum vitamin D level was correlated with increased risk of tumors. Dysfunctional T cells in patients with tumor are characterized as exhausted with high levels of immune checkpoint receptors (ICRs). However,whether the reduced level of vitamin D in patients with cancer correlates with cytotoxic T-cell exhaustion is unknown. METHODS Periphery blood samples from 172 patients with non-small cell lung cancer (NSCLC) were prospectively collected. Patients with NSCLC received one course of intravenous docetaxel (75 mg/m2) followed by treatment with or without rocaltrol at a dose of 0.5-2.0 µg/day for total of 3 weeks. We performed phenotypical and functional analysis of T-cell through flow cytometry. Vitamin D receptor (VDR) knockout and overexpression CD8+ and V$\delta$2+ T cells were constructed using Cas9-gRNA targeted and overexpressing approaches to identify 1$\alpha$,25(OH)2D3/VDR-mediated transcription regulation for ICRs or antitumor activity in T cells. RESULTS We show that serum level of vitamin D is negatively correlated with expression of programmed cell death-1 (PD-1),T-cell immunoreceptor with Ig and ITIM domains (TIGIT),and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3),but positively correlated with CD28 expression on CD8+ and V$\gamma$9V$\delta$2+ T cells in patients with NSCLC. 1$\alpha$,25(OH)2D3,the active form of vitamin D,promotes the nuclear translocation of VDR,which binds to the promoter region of Pdcd1,Tim3,and Tigit genes and inhibits their expression. Besides,1$\alpha$,25(OH)2D3 pretreatment also promotes the methylation of CpG island in the promoter region of the Pdcd1 gene and increases H3K27 acetylation at the promoter region of the Cd28 gene,which leads to surface PD-1 downregulation and CD28 upregulation,respectively. We further reveal that VDR-mediated Ca2+ influx enhanced expression of Th1 cytokines via T-cell receptor activation. Functionally,1$\alpha$,25(OH)2D3 pretreated CD8+ T cells or V$\gamma$9V$\delta$2+ T cells showed increased Th1 cytokine production and enhanced antitumor immunity. Finally,oral 1$\alpha$,25(OH)2D3 could also decrease expression of PD-1,Tim-3,TIGIT and increase expression of CD28,resulting in cytokine production (associated with antitumor immunity) by cytotoxic T cells of patients with NSCLC. CONCLUSIONS Our findings uncover the pleiotropic effects of 1$\alpha$,25(OH)2D3 in rescuing the exhausted phenotype of human cytotoxic T cells in patients with tumor and in promoting their antitumor immunity. TRIAL REGISTRATION NUMBER ChiCTR2100051135. View Publication -
R. Bitsch et al. (mar 2022) Journal for immunotherapy of cancer 10 3STAT3 inhibitor Napabucasin abrogates MDSC immunosuppressive capacity and prolongs survival of melanoma-bearing mice.
BACKGROUND Myeloid-derived suppressor cells (MDSCs) represent a negative prognostic factor in malignant melanoma. These cells are generated under chronic inflammatory conditions typical of cancer. The transcription factor signal transducer and activator of transcription 3 (STAT3) orchestrates MDSC accumulation and acquisition of immunosuppressive properties. Here we studied STAT3 inhibition by Napabucasin as a way to block MDSC accumulation and activity and its potential to treat malignant melanoma. METHODS In vitro generated murine MDSC and primary MDSC from melanoma-bearing mice were used to investigate the effects of Napabucasin on MDSC in vitro. The RET transgenic mouse model of malignant melanoma was used to examine Napabucasin therapy efficiency and its underlying mechanisms in vivo. Furthermore,STAT3 activation and its correlation with survival were explored in MDSC from 19 patients with malignant melanoma and human in vitro generated monocytic myeloid-derived suppressor cell (M-MDSC) were used to evaluate the effects of Napabucasin. RESULTS Napabucasin was able to abrogate the capacity of murine MDSC to suppress CD8+ T-cell proliferation. The STAT3 inhibitor induced apoptosis in murine MDSC,significantly increased expression of molecules associated with antigen processing and presentation,as well as slightly decreased expression of immunosuppressive factors on these cells. RET transgenic mice treated with Napabucasin showed prolonged survival accompanied by a strong accumulation of tumor-infiltrating antigen-presenting cells and activation of CD8+ and CD4+ T cells. Interestingly,patients with malignant melanoma with high expression of activated STAT3 in circulating M-MDSC showed significantly worse progression-free survival (PFS) than patients with low levels of activated STAT3. In addition,Napabucasin was able to abrogate suppressive capacity of human in vitro generated M-MDSC. CONCLUSION Our findings demonstrate that STAT3 inhibitor Napabucasin completely abrogated the immunosuppressive capacity of murine MDSC and human M-MDSC and improved melanoma-bearing mouse survival. Moreover,patients with malignant melanoma with high expression levels of activated STAT3 in M-MDSC displayed shorter PFS,indicating its role as a promising therapeutic target in patients with malignant melanoma and a predictive marker for their clinical outcome. View Publication -
Y. Shen et al. (mar 2022) Journal for immunotherapy of cancer 10 3Cancer cell-intrinsic resistance to BiTE therapy is mediated by loss of CD58 costimulation and modulation of the extrinsic apoptotic pathway.
BACKGROUND Bispecific T-cell engager (BiTE) molecules induce redirected lysis of cancer cells by T cells and are an emerging modality for solid tumor immunotherapy. While signs of clinical activity have been demonstrated,efficacy of T-cell engagers (TCEs) in solid tumors settings,molecular determinants of response,and underlying mechanisms of resistance to BiTE therapy require more investigation. METHODS To uncover cancer cell-intrinsic genetic modifiers of TCE-mediated cytotoxicity,we performed genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loss-of-function and CRISPRa (CRISPR activation) gain-of-function screens using TCEs against two distinct tumor-associated antigens (TAAs). By using in vitro T-cell cytotoxicity assays and in vivo efficacy studies,we validated the roles of two common pathways identified in our screen,T-cell costimulation pathway and apoptosis pathway,as key modifiers of BiTE activity. RESULTS Our genetic screens uncovered TAAs-independent cancer cell-intrinsic genes with functions in autophagy,T-cell costimulation,the apoptosis pathway,chromatin remodeling,and cytokine signaling that altered responsiveness to BiTE-mediated killing. Notably,loss of CD58 (the ligand of the CD2 T-cell costimulatory receptor),a gene frequently altered in cancer,led to decreased TCE-mediated cytotoxicity,T-cell activation and antitumor efficacy in vitro and in vivo. Moreover,the effects of CD58 loss were synergistically compounded by concurrent loss of CD80/CD86 (ligands for the CD28 T-cell costimulatory receptor),whereas joint CD2 and CD28 costimulation additively enhanced TCE-mediated killing,indicating non-redundant costimulatory mechanisms between the two pathways. Additionally,loss of CFLAR (Caspase-8 and FADD Like Apoptosis Regulator),BCL2L1,and BID (BH3 Interacting Domain Death Agonist) induced profound changes in sensitivity to TCEs,indicating that key regulators of apoptosis,which are frequently altered in cancer,impact tumor responsiveness to BiTE therapy. CONCLUSIONS This study demonstrates that genetic alterations central to carcinogenesis and commonly detected in cancer samples lead to significant modulation of BiTE antitumor activity in vitro and in vivo,findings with relevance for a better understanding of patient responses to BiTE therapy and novel combinations that enhance TCE efficacy. View Publication -
A. Goral et al. ( 2022) Frontiers in immunology 13 781364A Specific CD44lo CD25lo Subpopulation of Regulatory T Cells Inhibits Anti-Leukemic Immune Response and Promotes the Progression in a Mouse Model of Chronic Lymphocytic Leukemia.
Regulatory T cells (Tregs) are capable of inhibiting the proliferation,activation and function of T cells and play an important role in impeding the immune response to cancer. In chronic lymphocytic leukemia (CLL) a dysfunctional immune response and elevated percentage of effector-like phenotype Tregs have been described. In this study,using the Eµ-TCL1 mouse model of CLL,we evaluated the changes in the Tregs phenotype and their expansion at different stages of leukemia progression. Importantly,we show that Tregs depletion in DEREG mice triggered the expansion of new anti-leukemic cytotoxic T cell clones leading to leukemia eradication. In TCL1 leukemia-bearing mice we identified and characterized a specific Tregs subpopulation,the phenotype of which suggests its role in the formation of an immunosuppressive microenvironment,supportive for leukemia survival and proliferation. This observation was also confirmed by the gene expression profile analysis of these TCL1-specific Tregs. The obtained data on Tregs are consistent with those described so far,however,above all show that the changes in the Tregs phenotype described in CLL result from the formation of a specific,described in this study Tregs subpopulation. In addition,functional tests revealed the ability of Tregs to inhibit T cells that recognize model antigens expressed by leukemic cells. Moreover,inhibition of Tregs with a MALT1 inhibitor provided a therapeutic benefit,both as monotherapy and also when combined with an immune checkpoint inhibitor. Altogether,activation of Tregs appears to be crucial for CLL progression. View Publication -
Y. N. Yoon et al. (mar 2022) Journal for immunotherapy of cancer 10 3PI3K$\delta$/$\gamma$ inhibitor BR101801 extrinsically potentiates effector CD8+ T cell-dependent antitumor immunity and abscopal effect after local irradiation.
BACKGROUND Radiotherapy enhances antitumor immunity. However,it also induces immunosuppressive responses,which are major hurdles for an effective treatment. Thus,targeting the immunosuppressive tumor microenvironment is essential for enhancing the antitumor immunity after radiotherapy. Retrospective studies show that a blockade of PI3K$\delta$ and/or $\gamma$,which are abundant in leukocytes,exhibits antitumor immune response by attenuating activity of immune suppressive cells,however,the single blockade of PI3K$\delta$ or $\gamma$ is not sufficient to completely eliminate solid tumor. METHODS We used BR101801,PI3K$\delta$/$\gamma$ inhibitor in the CT-26 syngeneic mouse model with a subcutaneously implanted tumor. BR101801 was administered daily,and the target tumor site was locally irradiated. We monitored the tumor growth regularly and evaluated the immunological changes using flow cytometry,ELISpot,and transcriptional analysis. RESULTS This study showed that BR101801 combined with irradiation promotes systemic antitumor immunity and abscopal response by attenuating the activity of immune suppressive cells in the CT-26 tumor model. BR101801 combined with irradiation systemically reduced the proliferation of regulatory T cells (Tregs) and enhanced the number of tumor-specific CD8$\alpha$+ T cells in the tumor microenvironment,thereby leading to tumor regression. Furthermore,the high ratio of CD8$\alpha$+ T cells to Tregs was maintained for 14 days after irradiation,resulting in remote tumor regression in metastatic lesions,the so-called abscopal effect. Moreover,our transcriptomic analysis showed that BR101801 combined with irradiation promoted the immune-stimulatory tumor microenvironment,suggesting that the combined therapy converts immunologically cold tumors into hot one. CONCLUSIONS Our data suggest the first evidence that PI3K$\delta$/$\gamma$ inhibition combined with irradiation promotes systemic antitumor immunity against solid tumors,providing the preclinical result of the potential use of PI3K$\delta$/$\gamma$ inhibitor as an immune-regulatory radiosensitizer. View Publication -
N. A. du Foss\'e et al. (jun 2022) Journal of reproductive immunology 151 103500Impaired immunomodulatory effects of seminal plasma may play a role in unexplained recurrent pregnancy loss: Results of an in vitro study.
BACKGROUND Seminal plasma contains signaling molecules capable of modulating the maternal immune environment to support implantation and pregnancy. Prior studies indicated that seminal plasma induces changes in gene transcription of maternal immune cells. Reduced immune suppressive capacity may lead to pregnancy loss. The aim of this study was to investigate the immunomodulating effects of seminal plasma on T cells and monocytes in the context of recurrent pregnancy loss (RPL). METHODS Female T cells and monocytes were incubated with seminal plasma of 20 males in unexplained RPL couples (RPL males) and of 11 males whose partners had ongoing pregnancies (control males). The effect of seminal plasma on messenger RNA (mRNA) expression of immune cells was measured. Levels of mRNA expression were related to key signaling molecules present in the seminal plasma. Agglomerative hierarchical cluster analysis was performed on seminal plasma expression profiles and on mRNA expression profiles. RESULTS Expression of CD25 and anti-inflammatory IL-10 by female T cells was significantly lower after stimulation with seminal plasma of RPL males compared to control males. Female monocytes treated with seminal plasma of RPL males showed an immune activation signature of relatively elevated HLA-DR expression. Expression of these T cell and monocyte components was particularly correlated with the amounts of TGF-$\beta$ and VEGF in the seminal plasma. CONCLUSION Our findings indicate that seminal plasma has immunomodulating properties on female immune cells compatible with the induction of a more regulatory phenotype,which may be impaired in cases of unexplained RPL. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号