Hess DA et al. (MAR 2008)
Stem cells (Dayton,Ohio) 26 3 611--20
Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity.
Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However,development of cell-based regenerative therapies has been hindered by the lack of preclinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII mice,we characterized the distribution of lineage-depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase (ALDH) activity with CD133 coexpression. ALDH(hi) or ALDH(hi)CD133+ cells produced robust hematopoietic reconstitution and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that coexpressed human leukocyte antigen (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues,including islet and ductal regions of mouse pancreata. In contrast,variable phenotypes were detected in the chimeric liver,with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels and CD45-/HLA- cells with diluted GUSB expression predominant in the liver parenchyma. However,true nonhematopoietic human (HLA+/CD45-) cells were rarely detected in other peripheral tissues,suggesting that these GUSB+/HLA-/CD45- cells in the liver were a result of downregulated human surface marker expression in vivo,not widespread seeding of nonhematopoietic cells. However,relying solely on continued expression of cell surface markers,as used in traditional xenotransplantation models,may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes,indicating that these adult progenitor cells should be explored in transplantation models of tissue damage.
View Publication
文献
Qiu C et al. (FEB 2008)
Blood 111 4 2400--8
Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells.
We have previously shown that coculture of human embryonic stem cells (hESCs) for 14 days with immortalized fetal hepatocytes yields CD34(+) cells that can be expanded in serum-free liquid culture into large numbers of megaloblastic nucleated erythroblasts resembling yolk sac-derived cells. We show here that these primitive erythroblasts undergo a switch in hemoglobin (Hb) composition during late terminal erythroid maturation with the basophilic erythroblasts expressing predominantly Hb Gower I (zeta(2)epsilon(2)) and the orthochromatic erythroblasts hemoglobin Gower II (alpha(2)epsilon(2)). This suggests that the switch from Hb Gower I to Hb Gower II,the first hemoglobin switch in humans is a maturation switch not a lineage switch. We also show that extending the coculture of the hESCs with immortalized fetal hepatocytes to 35 days yields CD34(+) cells that differentiate into more developmentally mature,fetal liver-like erythroblasts,that are smaller,express mostly fetal hemoglobin,and can enucleate. We conclude that hESC-derived erythropoiesis closely mimics early human development because the first 2 human hemoglobin switches are recapitulated,and because yolk sac-like and fetal liver-like cells are sequentially produced. Development of a method that yields erythroid cells with an adult phenotype remains necessary,because the most mature cells that can be produced with current systems express less than 2% adult beta-globin mRNA.
View Publication
文献
Visus C et al. (NOV 2007)
Cancer research 67 21 10538--45
Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck.
Few epitopes are available for vaccination therapy of patients with squamous cell carcinoma of the head and neck (SCCHN). Using a tumor-specific CTL,aldehyde dehydrogenase 1 family member A1 (ALDH1A1) was identified as a novel tumor antigen in SCCHN. Mass spectral analysis of peptides in tumor-derived lysates was used to determine that the CTL line recognized the HLA-A*0201 (HLA-A2) binding ALDH1A1(88-96) peptide. Expression of ALDH1A1 in established SCCHN cell lines,normal mucosa,and primary keratinocytes was studied by quantitative reverse transcription-PCR and immunostaining. Protein expression was further defined by immunoblot analysis,whereas ALDH1A1 activity was measured using ALDEFLUOR. ALDH1A1(88-96) peptide was identified as an HLA-A2-restricted,naturally presented,CD8(+) T-cell-defined tumor peptide. ALDH1A1(88-96) peptide-specific CD8(+) T cells recognized only HLA-A2(+) SCCHN cell lines,which overexpressed ALDH1A1,as well as targets transfected with ALDH1A1 cDNA. Target recognition was blocked by anti-HLA class I and anti-HLA-A2 antibodies. SCCHN cell lines overexpressing ALDH1 had high enzymatic activity. ALDH1A1 protein was expressed in 12 of 17 SCCHN,and 30 of 40 dysplastic mucosa samples,but not in normal mucosa. ALDH1A1 expression levels in target cells correlated with their recognition by ALDH1A1(88-96) peptide-specific CD8(+) T cells. Our findings identify ALDH1A1,a metabolic antigen,as a potential target for vaccination therapy in the cohort of SCCHN subjects with tumors overexpressing this protein. A smaller cohort of subjects with SCCHN,whose tumors express little to no ALDH1A1,and thus are deficient in conversion of retinal to retinoic acid,could benefit from chemoprevention therapy.
View Publication
文献
Dirlam A et al. (DEC 2007)
Molecular and cellular biology 27 24 8713--28
Deregulated E2f-2 underlies cell cycle and maturation defects in retinoblastoma null erythroblasts.
By assessing the contribution of deregulated E2F activity to erythroid defects in Rb null mice,we have identified E2f-2 as being upregulated in end-stage red cells,where we show it is the major pRb-associated E2f and the predominant E2f detected at key target gene promoters. Consistent with its expression pattern,E2f-2 loss restored terminal erythroid maturation to Rb null red cells,including the ability to undergo enucleation. Deletion of E2f-2 also extended the life span of Rb null mice despite persistent defects in placental development,indicating that deregulated E2f-2 activity in differentiating erythroblasts contributes to the premature lethality of Rb null mice. We show that the aberrant entry of Rb null erythroblasts into S phase at times in differentiation when wild-type erythroblasts are exiting the cell cycle is inhibited by E2f-2 deletion. E2f-2 loss induced cell cycle arrest in both wild-type and Rb null erythroblasts and was associated with increased DNA double-strand breaks. These results implicate deregulated E2f-2 in the cell cycle defects observed in Rb null erythroblasts and reveal a novel role for E2f-2 during terminal red blood cell differentiation. The identification of a tissue-restricted role for E2f-2 in erythropoiesis highlights the nonredundant nature of E2f transcription factor activities in cell growth and differentiation.
View Publication
文献
Gentry T et al. (JAN 2007)
Cytotherapy 9 6 569--76
Isolation of early hematopoietic cells, including megakaryocyte progenitors, in the ALDH-bright cell population of cryopreserved, banked UC blood.
BACKGROUND: ALDH-bright (ALDH(br)) cell populations sorted from freshly collected umbilical cord blood (UCB) on the basis of their high aldehyde dehydrogenase (ALDH) activity are highly enriched for HPC. HPC with low ALDH activity (ALDH(dim)) are primarily short-term progenitors,whereas progenitors that initiate long-term cultures or establish long-term grafts in xenograft models are ALDH(br). We examined the multilineage hematopoietic and platelet progenitor activities of ALDH(br) cells recovered from cryopreserved UCB units typically employed in the practice of clinical transplantation. METHODS: Frozen UCB units were thawed,washed,immunomagnetically depleted of cells expressing glycophorin A and CD14,reacted for flow cytometric detection of ALDH,and sorted to yield ALDH(br) and ALDH(dim) populations. We measured surface Ag expression and viability of cells in the ALDH(br) and ALDH(dim) populations by flow cytometry and hematopoietic (CFC-H) and megakaryocytic (CFC-Mk) colony-forming cells in each population. RESULTS: ALDH(br) populations isolated from thawed UCB cells were highly enriched for CD34(+) and CD133(+) cells. Flow-sorted ALDH(br) populations were enriched 1116-fold in CFC-H,10-fold in multilineage GEMM colonies and 2015-fold in CFC-Mk compared with the ALDH(dim) population. All progenitors giving rise to large Mk colonies were derived from ALDH(br) populations. DISCUSSION: ALDH(br) populations recovered from thawed,banked UCB with the method we describe have HPC activity and may be useful in the clinic to facilitate reconstitution of erythroid,myeloid and megakaryocytic blood elements.
View Publication
文献
Nemeth MJ et al. (SEP 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 39 15436--41
Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation.
The mechanisms that regulate hematopoietic stem cell (HSC) fate decisions between proliferation and multilineage differentiation are unclear. Members of the Wnt family of ligands that activate the canonical Wnt signaling pathway,which utilizes beta-catenin to relay the signal,have been demonstrated to regulate HSC function. In this study,we examined the role of noncanonical Wnt signaling in regulating HSC fate. We observed that noncanonical Wnt5a inhibited Wnt3a-mediated canonical Wnt signaling in HSCs and suppressed Wnt3a-mediated alterations in gene expression associated with HSC differentiation,such as increased expression of myc. Wnt5a increased short- and long-term HSC repopulation by maintaining HSCs in a quiescent G(0) state. From these data,we propose that Wnt5a regulates hematopoiesis by the antagonism of the canonical Wnt pathway,resulting in a pool of quiescent HSCs.
View Publication
文献
Rawat VPS et al. (JAN 2008)
Blood 111 1 309--19
Overexpression of CDX2 perturbs HOX gene expression in murine progenitors depending on its N-terminal domain and is closely correlated with deregulated HOX gene expression in human acute myeloid leukemia.
The mechanisms underlying deregulation of HOX gene expression in AML are poorly understood. The ParaHox gene CDX2 was shown to act as positive upstream regulator of several HOX genes. In this study,constitutive expression of Cdx2 caused perturbation of leukemogenic Hox genes such as Hoxa10 and Hoxb8 in murine hematopoietic progenitors. Deletion of the N-terminal domain of Cdx2 abrogated its ability to perturb Hox gene expression and to cause acute myeloid leukemia (AML) in mice. In contrast inactivation of the putative Pbx interacting site of Cdx2 did not change the leukemogenic potential of the gene. In an analysis of 115 patients with AML,expression levels of CDX2 were closely correlated with deregulated HOX gene expression. Patients with normal karyotype showed a 14-fold higher expression of CDX2 and deregulated HOX gene expression compared with patients with chromosomal translocations such as t(8:21) or t(15;17). All patients with AML with normal karyotype tested were negative for CDX1 and CDX4 expression. These data link the leukemogenic potential of Cdx2 to its ability to dysregulate Hox genes. They furthermore correlate the level of CDX2 expression with HOX gene expression in human AML and support a potential role of CDX2 in the development of human AML with aberrant Hox gene expression.
View Publication
文献
Twu Y-C et al. (DEC 2007)
Blood 110 13 4526--34
I branching formation in erythroid differentiation is regulated by transcription factor C/EBPalpha.
The histo-blood group i and I antigens have been characterized as straight and branched repeats of N-acetyllactosamine,respectively,and the conversion of the straight-chain i to the branched-chain I structure on red cells is regulated to occur after birth. It has been demonstrated that the human I locus expresses 3 IGnT transcripts,IGnTA,IGnTB,and IGnTC,and that the last of these is responsible for the I branching formation on red cells. In the present investigation,the K-562 cell line was used as a model to show that the i-to-I transition in erythroid differentiation is determined by the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha),which enhances transcription of the IGnTC gene,consequently leading to formation of the I antigen. Further investigation suggested that C/EBPalpha IGnTC-activation activity is modulated at a posttranslational level,and that the phosphorylation status of C/EBPalpha may have a crucial effect. Results from studies using adult and cord erythropoietic cells agreed with those derived using the K-562 cell model,with lentiviral expression of C/EBPalpha in CD34(+) hemopoietic cells demonstrating the determining role of C/EBPalpha in the induction of the IGnTC gene as well as in I antigen expression.
View Publication
文献
Dí et al. (DEC 2007)
Cardiovascular research 76 3 517--27
Plasticity of CD133+ cells: role in pulmonary vascular remodeling.
OBJECTIVE: Studies in pulmonary arteries (PA) of patients with chronic obstructive pulmonary disease (COPD) suggest that bone marrow-derived endothelial progenitor cells (CD133(+)) may infiltrate the intima and differentiate into smooth muscle cells (SMC). This study aimed to evaluate the plasticity of CD133(+) cells to differentiate into SMC and endothelial cells (EC) in both cell culture and human isolated PA. METHODS: Plasticity of granulocyte-colony stimulator factor (G-CSF)-mobilized peripheral blood CD133(+) cells was assessed in co-cultures with primary lines of human PA endothelial cells (PAEC) or SMC (PASMC) and in isolated human PA. We also evaluated if the phenotype of differentiated progenitor cells was acquired by fusion or differentiation. RESULTS: The in vitro studies demonstrated CD133(+) cells may acquire the morphology and phenotype of the cells they were co-cultured with. CD133(+) cells co-incubated with human isolated PA were able to migrate into the intima and differentiate into SMC. Progenitor cell differentiation was produced without fusion with mature cells. CONCLUSIONS: We provide evidence of plasticity of CD133(+) cells to differentiate into both endothelial cells and SMC,reinforcing the idea of their potential role in the remodeling process of PA in COPD. This process was conducted by transdifferentiation and not by cell fusion.
View Publication
文献
Griffiths RE et al. (DEC 2007)
Blood 110 13 4518--25
Normal prion protein trafficking in cultured human erythroblasts.
Normal prion protein (PrP(c)),an essential substrate for development of prion disease,is widely distributed in hematopoietic cells. Recent evidence that variant Creutzfeldt-Jakob disease can be transmitted by transfusion of red cell preparations has highlighted the need for a greater understanding of the biology of PrP(c) in blood and blood-forming tissues. Here,we show that in contrast to another glycosylphosphoinositol-anchored protein CD59,PrP(c) at the cell surface of cultured human erythroblasts is rapidly internalized through the endosomal pathway,where it colocalizes with the tetraspanin CD63. In the plasma membrane,PrP(c) colocalizes with the tetraspanin CD81. Cross-linking with anti-PrP(c) or anti-CD81 causes clustering of PrP(c) and CD81,suggesting they can share the same microdomain. These data are consistent with a role for tetraspanin-enriched microdomains in trafficking of PrP(c). These results,when taken together with recent evidence that exosomes released from cells as a result of endosomal-mediated recycling to the plasma membrane contain prion infectivity,provide a pathway for the propagation of prion diseases.
View Publication
文献
Nottingham WT et al. (DEC 2007)
Blood 110 13 4188--97
Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer.
The transcription factor Runx1/AML1 is an important regulator of hematopoiesis and is critically required for the generation of the first definitive hematopoietic stem cells (HSCs) in the major vasculature of the mouse embryo. As a pivotal factor in HSC ontogeny,its transcriptional regulation is of high interest but is largely undefined. In this study,we used a combination of comparative genomics and chromatin analysis to identify a highly conserved 531-bp enhancer located at position + 23.5 in the first intron of the 224-kb mouse Runx1 gene. We show that this enhancer contributes to the early hematopoietic expression of Runx1. Transcription factor binding in vivo and analysis of the mutated enhancer in transient transgenic mouse embryos implicate Gata2 and Ets proteins as critical factors for its function. We also show that the SCL/Lmo2/Ldb-1 complex is recruited to the enhancer in vivo. Importantly,transplantation experiments demonstrate that the intronic Runx1 enhancer targets all definitive HSCs in the mouse embryo,suggesting that it functions as a crucial cis-regulatory element that integrates the Gata,Ets,and SCL transcriptional networks to initiate HSC generation.
View Publication
文献
Moulding DA et al. (SEP 2007)
The Journal of experimental medicine 204 9 2213--24
Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia.
Specific mutations in the human gene encoding the Wiskott-Aldrich syndrome protein (WASp) that compromise normal auto-inhibition of WASp result in unregulated activation of the actin-related protein 2/3 complex and increased actin polymerizing activity. These activating mutations are associated with an X-linked form of neutropenia with an intrinsic failure of myelopoiesis and an increase in the incidence of cytogenetic abnormalities. To study the underlying mechanisms,active mutant WASp(I294T) was expressed by gene transfer. This caused enhanced and delocalized actin polymerization throughout the cell,decreased proliferation,and increased apoptosis. Cells became binucleated,suggesting a failure of cytokinesis,and micronuclei were formed,indicative of genomic instability. Live cell imaging demonstrated a delay in mitosis from prometaphase to anaphase and confirmed that multinucleation was a result of aborted cytokinesis. During mitosis,filamentous actin was abnormally localized around the spindle and chromosomes throughout their alignment and separation,and it accumulated within the cleavage furrow around the spindle midzone. These findings reveal a novel mechanism for inhibition of myelopoiesis through defective mitosis and cytokinesis due to hyperactivation and mislocalization of actin polymerization.
View Publication