Sakuma M et al. (JAN 2016)
Science and technology of advanced materials 17 1 473--482
Quantitative evaluation of malignant gliomas damage induced by photoactivation of IR700 dye.
The processes involved in malignant gliomas damage were quantitatively evaluated by microscopy. The near-infrared fluorescent dye IR700 that is conjugated to an anti-CD133 antibody (IR700-CD133) specifically targets malignant gliomas (U87MG) and stem cells (BT142) and is endocytosed into the cells. The gliomas are then photodamaged by the release of reactive oxygen species (ROS) and the heat induced by illumination of IR700 by a red laser,and the motility of the vesicles within these cells is altered as a result of cellular damage. To investigate these changes in motility,we developed a new method that measures fluctuations in the intensity of phase-contrast images obtained from small areas within cells. The intensity fluctuation in U87MG cells gradually decreased as cell damage progressed,whereas the fluctuation in BT142 cells increased. The endocytosed IR700 dye was co-localized in acidic organelles such as endosomes and lysosomes. The pH in U87MG cells,as monitored by a pH indicator,was decreased and then gradually increased by the illumination of IR700,while the pH in BT142 cells increased monotonically. In these experiments,the processes of cell damage were quantitatively evaluated according to the motility of vesicles and changes in pH.
View Publication
文献
Saito T et al. (JUL 2013)
PLoS ONE 8 7 e70010
Metformin, a Diabetes Drug, Eliminates Tumor-Initiating Hepatocellular Carcinoma Cells
Metformin has been widely used as an oral drug for diabetes mellitus for approximately 60 years. Interestingly,recent reports showed that metformin exhibited an anti-tumor action in a wide range of malignancies including hepatocellular carcinoma (HCC). In the present study,we investigated its impact on tumor-initiating HCC cells. Metformin suppressed cell growth and induced apoptosis in a dose-dependent manner. Flow cytometric analysis showed that metformin treatment markedly reduced the number of tumor-initiating epithelial cell adhesion molecule (EpCAM)(+) HCC cells. Non-adherent sphere formation assays of EpCAM(+) cells showed that metformin impaired not only their sphere-forming ability,but also their self-renewal capability. Consistent with this,immunostaining of spheres revealed that metformin significantly decreased the number of component cells positive for hepatic stem cell markers such as EpCAM and α-fetoprotein. In a xenograft transplantation model using non-obese diabetic/severe combined immunodeficient mice,metformin and/or sorafenib treatment suppressed the growth of tumors derived from transplanted HCC cells. Notably,the administration of metformin but not sorafenib decreased the number of EpCAM(+) cells and impaired their self-renewal capability. As reported,metformin activated AMP-activated protein kinase (AMPK) through phosphorylation; however its inhibitory effect on the mammalian target of rapamycin (mTOR) pathway did not necessarily correlate with its anti-tumor activity toward EpCAM(+) tumor-initiating HCC cells. These results indicate that metformin is a promising therapeutic agent for the elimination of tumor-initiating HCC cells and suggest as-yet-unknown functions other than its inhibitory effect on the AMPK/mTOR pathway.
View Publication
文献
Rosa AI et al. (DEC 2016)
Frontiers in cellular neuroscience 10 284
Heterocellular Contacts with Mouse Brain Endothelial Cells Via Laminin and α6β1 Integrin Sustain Subventricular Zone (SVZ) Stem/Progenitor Cells Properties.
Neurogenesis in the subventricular zone (SVZ) is regulated by diffusible factors and cell-cell contacts. In vivo,SVZ stem cells are associated with the abluminal surface of blood vessels and such interactions are thought to regulate their neurogenic capacity. SVZ neural stem cells (NSCs) have been described to contact endothelial-derived laminin via α6β1 integrin. To elucidate whether heterocellular contacts with brain endothelial cells (BEC) regulate SVZ cells neurogenic capacities,cocultures of SVZ neurospheres and primary BEC,both obtained from C57BL/6 mice,were performed. The involvement of laminin-integrin interactions in SVZ homeostasis was tested in three ways. Firstly,SVZ cells were analyzed following incubation of BEC with the protein synthesis inhibitor cycloheximide (CHX) prior to coculture,a treatment expected to decrease membrane proteins. Secondly,SVZ cells were cocultured with BEC in the presence of an anti-α6 integrin neutralizing antibody. Thirdly,BEC were cultured with β1-/- SVZ cells. We showed that contact with BEC supports,at least in part,proliferation and stemness of SVZ cells,as evaluated by the number of BrdU positive (+) and Sox2+ cells in contact with BEC. These effects are dependent on BEC-derived laminin binding to α6β1 integrin and are decreased in cocultures incubated with anti-α6 integrin neutralizing antibody and in cocultures with SVZ β1-/- cells. Moreover,BEC-derived laminin sustains stemness in SVZ cell cultures via activation of the Notch and mTOR signaling pathways. Our results show that BEC/SVZ interactions involving α6β1 integrin binding to laminin,contribute to SVZ cell proliferation and stemness.
View Publication
文献
Relañ et al. (AUG 2013)
PLoS Pathogens 9 8 e1003485
Prion Replication Occurs in Endogenous Adult Neural Stem Cells and Alters Their Neuronal Fate: Involvement of Endogenous Neural Stem Cells in Prion Diseases
Prion diseases are irreversible progressive neurodegenerative diseases,leading to severe incapacity and death. They are characterized in the brain by prion amyloid deposits,vacuolisation,astrocytosis,neuronal degeneration,and by cognitive,behavioural and physical impairments. There is no treatment for these disorders and stem cell therapy therefore represents an interesting new approach. Gains could not only result from the cell transplantation,but also from the stimulation of endogenous neural stem cells (NSC) or by the combination of both approaches. However,the development of such strategies requires a detailed knowledge of the pathology,particularly concerning the status of the adult neurogenesis and endogenous NSC during the development of the disease. During the past decade,several studies have consistently shown that NSC reside in the adult mammalian central nervous system (CNS) and that adult neurogenesis occurs throughout the adulthood in the subventricular zone of the lateral ventricle or the Dentate Gyrus of the hippocampus. Adult NSC are believed to constitute a reservoir for neuronal replacement during normal cell turnover or after brain injury. However,the activation of this system does not fully compensate the neuronal loss that occurs during neurodegenerative diseases and could even contribute to the disease progression. We investigated here the status of these cells during the development of prion disorders. We were able to show that NSC accumulate and replicate prions. Importantly,this resulted in the alteration of their neuronal fate which then represents a new pathologic event that might underlie the rapid progression of the disease.
View Publication
文献
Rajasingh S et al. (AUG 2015)
PloS one 10 8 e0134093
Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility.
Human induced pluripotent stem cells (iPSCs) derived cardiomyocytes (iCMCs) would provide an unlimited cell source for regenerative medicine and drug discoveries. The objective of our study is to generate functional cardiomyocytes from human iPSCs and to develop a novel method of measuring contractility of CMCs. In a series of experiments,adult human skin fibroblasts (HSF) and human umbilical vein endothelial cells (HUVECs) were treated with a combination of pluripotent gene DNA and mRNA under specific conditions. The iPSC colonies were identified and differentiated into various cell lineages,including CMCs. The contractile activity of CMCs was measured by a novel method of frame-by-frame cross correlation (particle image velocimetry-PIV) analysis. Our treatment regimen transformed 4% of HSFs into iPSC colonies at passage 0,a significantly improved efficiency compared with use of either DNA or mRNA alone. The iPSCs were capable of differentiating both in vitro and in vivo into endodermal,ectodermal and mesodermal cells,including CMCs with<88% of cells being positive for troponin T (CTT) and Gata4 by flow cytometry. We report a highly efficient combination of DNA and mRNA to generate iPSCs and functional iCMCs from adult human cells. We also report a novel approach to measure contractility of iCMCs.
View Publication
文献
Rahman M et al. (MAR 2015)
Anatomy & cell biology 48 1 25--35
Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines.
Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently,reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture,apoptosis assays,protein expression,limiting dilution clonal frequency assay,genetic affymetrix analysis,and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin,P=0.9) were similar as well. Likewise,markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue,DiIC,caspase-3,and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition,genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally,glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional,protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence,both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.
View Publication
文献
Rahman M et al. (SEP 2013)
Future Oncology 9 9 1389--1396
Controlling tumor invasion: bevacizumab and BMP4 for glioblastoma
AIM Bevacizumab has been reported to result in increased tumor invasion when used to treat malignant glioma. We hypothesized that BMP4 would prevent diffuse tumor infiltration induced by bevacizumab for malignant glioma in a xenograft model. METHODS Human glioblastoma (GBM) tumor cells were implanted in the striatum of immunocompromised mice. The animals were treated with bevacizumab and BMP4. Tumor growth and invasion were measured. RESULTS The bevacizumab-treated mice had increased survival compared with control animals (p = 0.02). BMP4 alone did not result in improved survival (p = 1.0). The bevacizumab (p = 0.006) and bevacizumab plus BMP4 (p = 0.006) groups demonstrated significantly decreased total tumor size compared with control. Tumor invasion was significantly decreased in the bevacizumab (p = 0.005),BMP4 (p = 0.04) alone and bevacizumab plus BMP4 (p = 0.002) groups compared with control. No synergistic effect between bevacizumab and BMP4 was observed. CONCLUSION Bevacizumab treatment did not result in diffuse infiltration of human GBM in a mouse xenograft model. BMP4 did have an independent favorable effect on GBM that was not synergistic with bevacizumab treatment.
View Publication
文献
Pyonteck SM et al. (OCT 2013)
Nature medicine 19 10 1264--72
CSF-1R inhibition alters macrophage polarization and blocks glioma progression.
Glioblastoma multiforme (GBM) comprises several molecular subtypes,including proneural GBM. Most therapeutic approaches targeting glioma cells have failed. An alternative strategy is to target cells in the glioma microenvironment,such as tumor-associated macrophages and microglia (TAMs). Macrophages depend on colony stimulating factor-1 (CSF-1) for differentiation and survival. We used an inhibitor of the CSF-1 receptor (CSF-1R) to target TAMs in a mouse proneural GBM model,which significantly increased survival and regressed established tumors. CSF-1R blockade additionally slowed intracranial growth of patient-derived glioma xenografts. Surprisingly,TAMs were not depleted in treated mice. Instead,glioma-secreted factors,including granulocyte-macrophage CSF (GM-CSF) and interferon-γ (IFN-γ),facilitated TAM survival in the context of CSF-1R inhibition. Expression of alternatively activated M2 markers decreased in surviving TAMs,which is consistent with impaired tumor-promoting functions. These gene signatures were associated with enhanced survival in patients with proneural GBM. Our results identify TAMs as a promising therapeutic target for proneural gliomas and establish the translational potential of CSF-1R inhibition for GBM.
View Publication
文献
Poloni A et al. (JAN 2015)
Journal of Molecular Neuroscience 55 1 91--98
Glial-Like Differentiation Potential of Human Mature Adipocytes
The potential ability to differentiate dedifferentiated adipocytes into a neural lineage is attracting strong interest as an emerging method of producing model cells for the treatment of a variety of neurological diseases. Here,we describe the efficient conversion of dedifferentiated adipocytes into a neural-like cell population. These cells grew in neurosphere-like structures and expressed a high level of the early neuroectodermal marker Nestin. These neurospheres could proliferate and express stemness genes,suggesting that these cells could be committed to the neural lineage. After neural induction,NeuroD1,Sox1,Double Cortin,and Eno2 were not expressed. Patch clamp data did not reveal different electrophysiological properties,indicating the inability of these cells to differentiate into mature neurons. In contrast,the differentiated cells expressed a high level of CLDN11,as demonstrated using molecular method,and stained positively for the glial cell markers CLDN11 and GFAP,as demonstrated using immunocytochemistry. These data were confirmed by quantitative results for glial cell line-derived neurotrophic factor production,which showed a higher secretion level in neurospheres and the differentiated cells compared with the untreated cells. In conclusion,our data demonstrate morphological,molecular,and immunocytochemical evidence of initial neural differentiation of mature adipocytes,committing to a glial lineage.
View Publication
文献
Perez-Campo FM et al. (JUN 2014)
STEM CELLS 32 6 1591--1601
MOZ-Mediated Repression of p16 INK 4 a Is Critical for the Self-Renewal of Neural and Hematopoietic Stem Cells
Although inhibition of p16(INK4a) expression is critical to preserve the proliferative capacity of stem cells,the molecular mechanisms responsible for silencing p16(INK4a) expression remain poorly characterized. Here,we show that the histone acetyltransferase (HAT) monocytic leukemia zinc finger protein (MOZ) controls the proliferation of both hematopoietic and neural stem cells by modulating the transcriptional repression of p16(INK4a) . In the absence of the HAT activity of MOZ,expression of p16(INK4a) is upregulated in progenitor and stem cells,inducing an early entrance into replicative senescence. Genetic deletion of p16(INK4a) reverses the proliferative defect in both Moz(HAT) (-) (/) (-) hematopoietic and neural progenitors. Our results suggest a critical requirement for MOZ HAT activity to silence p16(INK4a) expression and to protect stem cells from early entrance into replicative senescence.
View Publication
文献
Peng S et al. (DEC 2015)
Annals of clinical and translational neurology 2 12 1085--104
Suppression of agrin-22 production and synaptic dysfunction in Cln1 (-/-) mice.
OBJECTIVE Oxidative stress in the brain is highly prevalent in many neurodegenerative disorders including lysosomal storage disorders,in which neurodegeneration is a devastating manifestation. Despite intense studies,a precise mechanism linking oxidative stress to neuropathology in specific neurodegenerative diseases remains largely unclear. METHODS Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative lysosomal storage disease caused by mutations in the ceroid lipofuscinosis neuronal-1 (CLN1) gene encoding palmitoyl-protein thioesterase-1. Previously,we reported that in the brain of Cln1 (-/-) mice,which mimic INCL,and in postmortem brain tissues from INCL patients,increased oxidative stress is readily detectable. We used molecular,biochemical,immunohistological,and electrophysiological analyses of brain tissues of Cln1 (-/-) mice to study the role(s) of oxidative stress in mediating neuropathology. RESULTS Our results show that in Cln1 (-/-) mice oxidative stress in the brain via upregulation of the transcription factor,CCAAT/enhancer-binding protein-δ,stimulated expression of serpina1,which is an inhibitor of a serine protease,neurotrypsin. Moreover,in the Cln1 (-/-) mice,suppression of neurotrypsin activity by serpina1 inhibited the cleavage of agrin (a large proteoglycan),which substantially reduced the production of agrin-22,essential for synaptic homeostasis. Direct whole-cell recordings at the nerve terminals of Cln1 (-/-) mice showed inhibition of Ca(2+) currents attesting to synaptic dysfunction. Treatment of these mice with a thioesterase-mimetic small molecule,N-tert (Butyl) hydroxylamine (NtBuHA),increased agrin-22 levels. INTERPRETATION Our findings provide insight into a novel pathway linking oxidative stress with synaptic pathology in Cln1 (-/-) mice and suggest that NtBuHA,which increased agrin-22 levels,may ameliorate synaptic dysfunction in this devastating neurodegenerative disease.
View Publication
文献
Pei Y et al. (MAR 2016)
Cancer cell 29 3 311--23
HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC-Driven Medulloblastoma.
Medulloblastoma (MB) is a highly malignant pediatric brain tumor. Despite aggressive therapy,many patients succumb to the disease,and survivors experience severe side effects from treatment. MYC-driven MB has a particularly poor prognosis and would greatly benefit from more effective therapies. We used an animal model of MYC-driven MB to screen for drugs that decrease viability of tumor cells. Among the most effective compounds were histone deacetylase inhibitors (HDACIs). HDACIs potently inhibit survival of MYC-driven MB cells in vitro,in part by inducing expression of the FOXO1 tumor suppressor gene. HDACIs also synergize with phosphatidylinositol 3-kinase inhibitors to inhibit tumor growth in vivo. These studies identify an effective combination therapy for the most aggressive form of MB.
View Publication