Eghbali-Fatourechi GZ et al. (MAY 2005)
The New England journal of medicine 352 19 1959--66
Circulating osteoblast-lineage cells in humans.
BACKGROUND: Although current evidence suggests that only a minuscule number of osteoblast-lineage cells are present in peripheral blood,we hypothesized that such cells circulate but that their concentration has been vastly underestimated owing to the use of assays that required adherence to plastic. We further reasoned that the concentration of these cells is elevated during times of increased bone formation,such as during pubertal growth. METHODS: We used flow cytometry with antibodies to bone-specific proteins to identify circulating osteoblast-lineage cells in 11 adolescent males and 11 adult males (mean [+/-SD] age,14.5+/-0.7 vs. 37.7+/-7.6 years). Gene expression and in vitro and in vivo bone-forming assays were used to establish the osteoblastic lineage of sorted cells. RESULTS: Cells positive for osteocalcin and cells positive for bone-specific alkaline phosphatase were detected in the peripheral blood of adult subjects (1 to 2 percent of mononuclear cells). There were more than five times as many cells positive for osteocalcin in the circulation of adolescent boys (whose markers of bone formation were clearly increased as a result of pubertal growth) as compared with adult subjects (Ptextless0.001). The percentage of cells positive for osteocalcin correlated with markers of bone formation. Sorted osteocalcin-positive cells expressed osteoblastic genes,formed mineralized nodules in vitro,and formed bone in an in vivo transplantation assay. Increased values were also found in three adults with recent fractures. CONCLUSIONS: Osteoblast-lineage cells circulate in physiologically significant numbers,correlate with markers of bone formation,and are markedly higher during pubertal growth; therefore,they may represent a previously unrecognized circulatory component to the process of bone formation.
View Publication
文献
Steward CG et al. (FEB 2005)
Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 11 2 115--21
High peripheral blood progenitor cell counts enable autologous backup before stem cell transplantation for malignant infantile osteopetrosis.
Autosomal recessive osteopetrosis (OP) is a rare,lethal disorder in which osteoclasts are absent or nonfunctional,resulting in a bone marrow cavity insufficient to support hematopoiesis. Because osteoclasts are derived from hematopoietic precursors,allogeneic hematopoietic cell transplantation can cure the bony manifestations of the disorder. However,high rates of graft failure have been observed in this population. It is not possible to harvest bone marrow from these patients for reinfusion should graft failure be observed. We report that 8 of 10 patients with OP had high numbers of circulating CD34(+) cells (3% +/- 0.9%). This increased proportion of peripheral CD34(+) cells made it possible to harvest 2 x 10(6) CD34(+) cells per kilogram with a total volume of blood ranging from 8.3 to 83.7 mL (1.3-11.6 mL/kg). In addition,colony-forming assays documented significantly more colony-forming unit-granulocyte-macrophage and burst-forming unit-erythroid in the blood of osteopetrotic patients compared with controls; the numbers of colony-forming units approximated those found in control marrow. We conclude that OP patients with high levels of circulating CD34(+) are candidates for peripheral blood autologous harvest by limited exchange transfusion. These cells are then available for reinfusion should graft failure be observed in patients for whom retransplantation is impractical.
View Publication
文献
Flores-Figueroa E et al. (FEB 2005)
Leukemia research 29 2 215--24
Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization.
Bone marrow-derived mesenchymal stem cells (MSC) have been defined as primitive,undifferentiated cells,capable of self-renewal and with the ability to give rise to different cell lineages,including adipocytes,osteocytes,fibroblasts,chondrocytes,and myoblasts. MSC are key components of the hematopoietic microenvironment. Several studies,including some from our own group,suggest that important quantitative and functional alterations are present in the stroma of patients with myelodysplasia (MDS). However,in most of such studies the stroma has been analyzed as a complex network of different cell types and molecules,thus it has been difficult to identify and characterize the cell(s) type(s) that is (are) altered in MDS. In the present study,we have focused on the biological characterization of MSC from MDS. As a first approach,we have quantified their numbers in bone marrow,and have worked on their phenotypic (morphology and immunophenotype) and cytogenetic properties. MSC were obtained by a negative selection procedure and cultured in a MSC liquid culture medium. In terms of morphology,as well as the expression of certain cell markers,no differences were observed between MSC from MDS patients and those derived from normal marrow. In both cases,MSC expressed CD29,CD90,CD105 and Prolyl-4-hydroxylase; in contrast,they did not express CD14,CD34,CD68,or alkaline phosphatase. Interestingly,in five out of nine MDS patients,MSC developed in culture showed cytogenetic abnormalities,usually involving the loss of chromosomal material. All those five cases also showed cytogenetic abnormalities in their hematopoietic cells. Interestingly,in some cases there was a complete lack of overlap between the karyotypes of hematopoietic cells and MSC. To the best of our knowledge,the present study is the first in which a pure population of MSC from MDS patients is analyzed in terms of their whole karyotype and demonstrates that in a significant proportion of patients,MSC are cytogenetically abnormal. Although the reason of this is still unclear,such alterations may have an impact on the physiology of these cells. Further studies are needed to assess the functional integrity of MDS-derived MSC.
View Publication
文献
Tauchmanovà et al. (FEB 2005)
The Journal of clinical endocrinology and metabolism 90 2 627--34
Short-term zoledronic acid treatment increases bone mineral density and marrow clonogenic fibroblast progenitors after allogeneic stem cell transplantation.
Although osteoporosis is a relatively common complication after allogeneic stem cell transplantation,the role of bisphosphonates in its management has not yet been completely established. Thirty-two patients who underwent allogeneic stem cell transplantation were prospectively evaluated for bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN) after a median period of 12.2 months. Then,15 of the patients with osteoporosis or rapidly progressing osteopenia (bone loss textgreater 5%/yr) received three monthly doses of 4 mg zoledronic acid iv. Fifteen patients were followed up without treatment,and all 30 patients were reevaluated after 12 months for BMD and bone turnover markers. By using enriched mesenchymal stem cells in the colony-forming units fibroblast (CFU-F) assay,we evaluated the osteogenic stromal lineage. This procedure was performed in both groups of patients at study entry and after 12 months. The average BMD loss was 3.42% at LS and 3.8% at FN during a 1-yr longitudinal evaluation in 32 patients. Subsequently,BMD increased at both LS and FN (9.8 and 6.4%,respectively) in the zoledronic acid-treated cohort. Hydroxyproline excretion decreased,and serum bone-specific alkaline phosphatase increased significantly,whereas serum osteocalcin increase did not reach the limit of significance. A significant increase in CFU-F growth in vitro was induced by in vivo zoledronic acid administration. In the untreated group,no significant change was observed in bone turnover markers,LS BMD (-2.1%),FN BMD (-2.3%),and CFU-F colony number. In conclusion,short-term zoledronic acid treatment consistently improved both LS and FN BMD in transplanted patients who were at high risk for fast and/or persistent bone loss,partly by increasing the osteogenic progenitors in the stromal cell compartment.
View Publication
文献
Ahrens N et al. (SEP 2004)
Transplantation 78 6 925--9
Mesenchymal stem cell content of human vertebral bone marrow.
Mesenchymal stem cells (MSCs) are capable of down-regulating alloimmune responses and promoting the engraftment of hematopoietic stem cells. MSCs may therefore be suitable for improving donor-specific tolerance induction in solid-organ transplantation. Cells from cadaveric vertebral bone marrow (V-BM),aspirated iliac crest-BM,and peripheral blood progenitor cells were compared. Cells were characterized by flow cytometry and colony assays. MSCs generated from V-BM were assayed for differentiation capacity and immunomodulatory function. A median 5.7 x 10(8) nucleated cells (NCs) were recovered per vertebral body. The mesenchymal progenitor,colony-forming unit-fibroblast,frequency in V-BM (11.6/10(5) NC,range: 6.0-20.0) was considerably higher than in iliac crest-BM (1.4/10(5) NC,range: 0.4-2.6) and peripheral blood progenitor cells (not detectable). MSC generated from V-BM had the typical MSC phenotype (CD105(pos)CD73(pos)CD45(neg)CD34(neg)),displayed multilineage differentiation potential,and suppressed alloreactivity in mixed lymphocyte reactions. V-BM may be an excellent source for MSC cotransplantation approaches.
View Publication
文献
Bieback K et al. (JAN 2004)
Stem cells (Dayton,Ohio) 22 4 625--34
Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood.
Evidence has emerged that mesenchymal stem cells (MSCs) represent a promising population for supporting new clinical concepts in cellular therapy. However,attempts to isolate MSCs from umbilical cord blood (UCB) of full-term deliveries have previously either failed or been characterized by a low yield. We investigated whether cells with MSC characteristics and multi-lineage differentiation potential can be cultivated from UCB of healthy newborns and whether yields might be maximized by optimal culture conditions or by defining UCB quality criteria. Using optimized isolation and culture conditions,in up to 63% of 59 low-volume UCB units,cells showing a characteristic mesenchymal morphology and immune phenotype (MSC-like cells) were isolated. These were similar to control MSCs from adult bone marrow (BM). The frequency of MSC-like cells ranged from 0 to 2.3 clones per 1 x 10(8) mononuclear cells (MNCs). The cell clones proliferated extensively with at least 20 population doublings within eight passages. In addition,osteogenic and chondrogenic differentiation demonstrated a multi-lineage capacity comparable with BM MSCs. However,in contrast to MSCs,MSC-like cells showed a reduced sensitivity to undergo adipogenic differentiation. Crucial points to isolate MSC-like cells from UCB were a time from collection to isolation of less than 15 hours,a net volume of more than 33 ml,and an MNC count of more than 1 x 10(8) MNCs. Because MSC-like cells can be isolated at high efficacy from full-term UCB donations,we regard UCB as an additional stem cell source for experimental and potentially clinical purposes.
View Publication
文献
Parsons CH et al. (NOV 2004)
Blood 104 9 2736--8
Susceptibility of human fetal mesenchymal stem cells to Kaposi sarcoma-associated herpesvirus.
Recent reports link Kaposi sarcoma-associated herpesvirus (KSHV) infection of bone marrow cells to bone marrow failure and lymphoproliferative syndromes. The identity of the infected marrow cells,however,remains unclear. Other work has demonstrated that circulating mononuclear cells can harbor KSHV where its detection predicts the onset and severity of Kaposi sarcoma. In either setting,bone marrow precursors may serve as viral reservoirs. Since mesenchymal stem cells (MSCs) in human bone marrow regulate the differentiation and proliferation of adjacent hematopoietic precursors,we investigated their potential role in KSHV infection. Our results indicate that primary MSCs are susceptible to both cell-free and cell-associated KSHV in culture. Moreover,infection persisted within nearly half of the cells for up to 6 weeks. Thus,MSCs possess a clear capacity to support KSHV infection and warrant further exploration into their potential role in KSHV-related human disease.
View Publication
Mesenchymal stem cells can be differentiated into endothelial cells in vitro.
Human bone marrow-derived mesenchymal stem cells (MSCs) have the potential to differentiate into mesenchymal tissues like osteocytes,chondrocytes,and adipocytes in vivo and in vitro. The aim of this study was to investigate the in vitro differentiation of MSCs into cells of the endothelial lineage. MSCs were generated out of mononuclear bone marrow cells from healthy donors separated by density gradient centrifugation. Cells were characterized by flow cytometry using a panel of monoclonal antibodies and were tested for their potential to differentiate along different mesenchymal lineages. Isolated MSCs were positive for the markers CD105,CD73,CD166,CD90,and CD44 and negative for typical hematopoietic and endothelial markers. They were able to differentiate into adipocytes and osteocytes after cultivation in respective media. Differentiation into endothelial-like cells was induced by cultivation of confluent cells in the presence of 2% fetal calf serum and 50 ng/ml vascular endothelial growth factor. Laser scanning cytometry analysis of the confluent cells in situ showed a strong increase of expression of endothelial-specific markers like KDR and FLT-1,and immunofluorescence analysis showed typical expression of the von Willebrand factor. The functional behavior of the differentiated cells was tested with an in vitro angiogenesis test kit where cells formed characteristic capillary-like structures. We could show the differentiation of expanded adult human MSCs into cells with phenotypic and functional features of endothelial cells. These predifferentiated cells provide new options for engineering of artificial tissues based on autologous MSCs and vascularized engineered tissues.
View Publication
文献
Rodrí et al. (MAY 2004)
Blood 103 9 3349--54
Interleukin-6 deficiency affects bone marrow stromal precursors, resulting in defective hematopoietic support.
Interleukin-6 (IL-6) is a critical factor in the regulation of stromal function and hematopoiesis. In vivo bromodeoxyuridine incorporation analysis indicates that the percentage of Lin(-)Sca-1(+) hematopoietic progenitors undergoing DNA synthesis is diminished in IL-6-deficient (IL-6(-/-)) bone marrow (BM) compared with wild-type BM. Reduced proliferation of IL-6(-/-) BM progenitors is also observed in IL-6(-/-) long-term BM cultures,which show defective hematopoietic support as measured by production of total cells,granulocyte macrophage-colony-forming units (CFU-GMs),and erythroid burst-forming units (BFU-Es). Seeding experiments of wild-type and IL-6(-/-) BM cells on irradiated wild-type or IL-6-deficient stroma indicate that the hematopoietic defect can be attributed to the stromal and not to the hematopoietic component. In IL-6(-/-) BM,stromal mesenchymal precursors,fibroblast CFUs (CFU-Fs),and stroma-initiating cells (SICs) are reduced to almost 50% of the wild-type BM value. Moreover,IL-6(-/-) stromata show increased CD34 and CD49e expression and reduced expression of the membrane antigens vascular cell adhesion molecule-1 (VCAM-1),Sca-1,CD49f,and Thy1. These data strongly suggest that IL-6 is an in vivo growth factor for mesenchymal precursors,which are in part implicated in the reduced longevity of the long-term repopulating stem cell compartment of IL-6(-/-) mice.
View Publication
文献
Olmsted-Davis EA et al. (DEC 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 26 15877--82
Primitive adult hematopoietic stem cells can function as osteoblast precursors.
Osteoblasts are continually recruited from stem cell pools to maintain bone. Although their immediate precursor is a plastic-adherent mesenchymal stem cell able to generate tissues other than bone,increasing evidence suggests the existence of a more primitive cell that can differentiate to both hematopoietic and mesenchymal cells. We show here that the side population" (SP) of marrow stem cells�
View Publication
文献
Vaysse L et al. (FEB 2004)
The Journal of biological chemistry 279 7 5555--64
Development of a self-assembling nuclear targeting vector system based on the tetracycline repressor protein.
The ultimate destination for most gene therapy vectors is the nucleus and nuclear import of potentially therapeutic DNA is one of the major barriers for nonviral vectors. We have developed a novel approach of attaching a nuclear localization sequence (NLS) peptide to DNA in a non-essential position,by generating a fusion between the tetracycline repressor protein TetR and the SV40-derived NLS peptide. The high affinity and specificity of TetR for the short DNA sequence tetO was used in these studies to bind the NLS to DNA as demonstrated by the reduced electrophoretic mobility of the TetR.tetO-DNA complexes. The protein TetR-NLS,but not control protein TetR,specifically enhances gene expression from lipofected tetO-containing DNA between 4- and 16-fold. The specific enhancement is observed in a variety of cell types,including primary and growth-arrested cells. Intracellular trafficking studies demonstrate an increased accumulation of fluorescence labeled DNA in the nucleus after TetR-NLS binding. In comparison,binding studies using the similar fusion of peptide nucleic acid (PNA) with NLS peptide,demonstrate specific binding of PNA to plasmid DNA. However,although we observed a 2-8.5-fold increase in plasmid-mediated luciferase activity with bis-PNA-NLS,control bis-PNA without an NLS sequence gave a similar increase,suggesting that the effect may not be because of a specific bis-PNA-NLS-mediated enhancement of nuclear transfer of the plasmid. Overall,we found TetRNLS-enhanced plasmid-mediated transgene expression at a similar level to that by bis-PNA-NLS or bis-PNA alone but specific to nuclear uptake and significantly more reliable and reproducible.
View Publication
文献
Lee OK et al. (MAR 2004)
Blood 103 5 1669--75
Isolation of multipotent mesenchymal stem cells from umbilical cord blood.
It is well accepted that umbilical cord blood has been a source for hematopoietic stem cells. However,controversy exists as to whether cord blood can serve as a source of mesenchymal stem cells,which can differentiate into cells of different connective tissue lineages such as bone,cartilage,and fat,and little success has been reported in the literature about the isolation of such cells from cord blood. Here we report a novel method to obtain single cell-derived,clonally expanded mesenchymal stem cells that are of multilineage differentiation potential by negative immunoselection and limiting dilution. The immunophenotype of these clonally expanded cells is consistent with that reported for bone marrow mesenchymal stem cells. Under appropriate induction conditions,these cells can differentiate into bone,cartilage,and fat. Surprisingly,these cells were also able to differentiate into neuroglial- and hepatocyte-like cells under appropriate induction conditions and,thus,these cells may be more than mesenchymal stem cells as evidenced by their ability to differentiate into cell types of all 3 germ layers. In conclusion,umbilical cord blood does contain mesenchymal stem cells and should not be regarded as medical waste. It can serve as an alternative source of mesenchymal stem cells to bone marrow.
View Publication