Butts JC et al. (APR 2017)
Proceedings of the National Academy of Sciences of the United States of America
Differentiation of V2a interneurons from human pluripotent stem cells.
The spinal cord consists of multiple neuronal cell types that are critical to motor control and arise from distinct progenitor domains in the developing neural tube. Excitatory V2a interneurons in particular are an integral component of central pattern generators that control respiration and locomotion; however,the lack of a robust source of human V2a interneurons limits the ability to molecularly profile these cells and examine their therapeutic potential to treat spinal cord injury (SCI). Here,we report the directed differentiation of CHX10(+) V2a interneurons from human pluripotent stem cells (hPSCs). Signaling pathways (retinoic acid,sonic hedgehog,and Notch) that pattern the neural tube were sequentially perturbed to identify an optimized combination of small molecules that yielded ∼25% CHX10(+) cells in four hPSC lines. Differentiated cultures expressed much higher levels of V2a phenotypic markers (CHX10 and SOX14) than other neural lineage markers. Over time,CHX10(+) cells expressed neuronal markers [neurofilament,NeuN,and vesicular glutamate transporter 2 (VGlut2)],and cultures exhibited increased action potential frequency. Single-cell RNAseq analysis confirmed CHX10(+) cells within the differentiated population,which consisted primarily of neurons with some glial and neural progenitor cells. At 2 wk after transplantation into the spinal cord of mice,hPSC-derived V2a cultures survived at the site of injection,coexpressed NeuN and VGlut2,extended neurites textgreater5 mm,and formed putative synapses with host neurons. These results provide a description of V2a interneurons differentiated from hPSCs that may be used to model central nervous system development and serve as a potential cell therapy for SCI.
View Publication
文献
Ferreira RB et al. (APR 2017)
Oncotarget 8 17 28971--28989
Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells.
Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus,new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors,and Triple-Negative" Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor�
View Publication
文献
Zhang S et al. (MAR 2017)
Stem cell research 19 49--51
Generation of a human induced pluripotent stem cell (iPSC) line from a 64year old male patient with multiple schwannoma.
Peripheral blood was collected from a clinically diagnosed 64-year old male multiple schwannoma patient. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers,and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for further pathological studies of multiple schwannoma.
View Publication
文献
Zhang S et al. (MAR 2017)
Stem cell research 19 43--45
Derivation of human induced pluripotent stem cell (iPSC) line from a 79year old sporadic male Parkinson's disease patient.
Peripheral blood was collected from a clinically diagnosed 79-year old male sporadic Parkinson's disease patient. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers,and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model can be used to study the mechanism of sporadic Parkinson's disease and to test new drugs. Resource Table.
View Publication
文献
Zhang S et al. (MAR 2017)
Stem cell research 19 34--36
Characterization of human induced pluripotent stem cell (iPSC) line from a 72year old male patient with later onset Alzheimer's disease.
Peripheral blood was collected from a clinically diagnosed 72-year old male patient with later onset Alzheimer's disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers,and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for studying the pathological mechanism of Alzheimer's disease.
View Publication
文献
Zhang S et al. (MAR 2017)
Stem cell research 19 31--33
Development of human induced pluripotent stem cell (iPSC) line from a 60year old female patient with multiple schwannoma.
Peripheral blood was collected from a clinically diagnosed 60-year old female patient with multiple schwannoma. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers,and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for further pathological studies of multiple schwannoma.
View Publication
文献
Ellis BW et al. (MAR 2017)
Biomicrofluidics 11 2 024105
Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine.
The heart wall tissue,or the myocardium,is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally,current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells,lack of a 3D biomimetic environment,and the use of non-human cells. In this study,we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels,to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining,genetic,and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality,and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment,and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days,and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line,essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner.
View Publication
文献
Guo D et al. (JAN 2017)
Stem cell research 18 67--69
Creating a patient carried Men1 gene point mutation on wild type iPSCs locus mediated by CRISPR/Cas9 and ssODN.
A patient specific point mutation (c.1288GtextgreaterT) of Men1 gene was introduced into wide type iPSC line with CRISPR/Cas9 and single-stranded donor oligonucleotides carrying the mutation. The mutated iPSC line has a heterozygous c.1288GtextgreaterT mutation on exon-9 of Men1 that was confirmed by sequencing analysis. The karyotype of this line was normal and the pluripotency was demonstrated by its ability to differentiate into three germ layers. These artificially created Men1 mutation in wild type iPSC line will help to dissect out the molecular basis of two patients carried the same mutation from one family who were differentially represented hypoglycemia.
View Publication
文献
Guo D et al. (JAN 2017)
Stem cell research 18 64--66
Generation of non-integrated induced pluripotent stem cells from a 59-year-old female with multiple endocrine neoplasia type 1 syndrome.
Urine resource cells were collected from a 59-year-old female patient with multiple endocrine neoplasia type 1 syndrome (MEN1) for generating iPS cells with episomal plasmids carrying Oct4,Sox2,Klf4 and miR-302-367. The patient sustained a heterozygous GtextgreaterT transition mutation on the exon 9 of Men1 gene that was confirmed by sequencing analysis on the obtained iPSC lines. Karyotyping indicated the chromosomes with normal appearances and numbers. Their pluripotency was demonstrated by gene expression,as well as their abilities for differentiating into three germ layers. This cell line provides an ideal model for studying MEN1.
View Publication
文献
Ma D et al. (JAN 2017)
Stem cell research 18 54--56
Generation of a human induced pluripotent stem cell (iPSC) line carrying the Parkinson's disease linked LRRK2 variant S1647T.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 64-year old male Parkinson's disease (PD) patient with S1647T variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model will be useful for further function studies and therapeutic screening.
View Publication
文献
Ma D et al. (JAN 2017)
Stem cell research 18 51--53
Development of a human induced pluripotent stem cell (iPSC) line from a Parkinson's disease patient carrying the N551K variant in LRRK2 gene.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 64-year old male Parkinson's disease (PD) patient with N551K variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model can complement in vivo PD models for pathophysiological studies and drug screening.
View Publication
文献
Ma D et al. (JAN 2017)
Stem cell research 18 48--50
Derivation of human induced pluripotent stem cell (iPSC) line with LRRK2 gene R1398H variant in Parkinson's disease.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 72-year old female Parkinson's disease (PD) patient with R1398H variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model provides a good platform for studying the mechanism of PD,and also for drug testing and gene therapy studies.
View Publication