Hino K et al. (JUL 2017)
The Journal of clinical investigation
Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva.
Fibrodysplasia ossificans progressiva (FOP) is a rare and intractable disease characterized by extraskeletal bone formation through endochondral ossification. Patients with FOP harbor point mutations in ACVR1,a type I receptor for BMPs. Although mutated ACVR1 (FOP-ACVR1) has been shown to render hyperactivity in BMP signaling,we and others have uncovered a mechanism by which FOP-ACVR1 mistransduces BMP signaling in response to Activin-A,a molecule that normally transduces TGF-β signaling. Although Activin-A evokes enhanced chondrogenesis in vitro and heterotopic ossification (HO) in vivo,the underlying mechanisms have yet to be revealed. To this end,we developed a high-throughput screening (HTS) system using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) to identify pivotal pathways in enhanced chondrogenesis that are initiated by Activin-A. In a screen of 6,809 small-molecule compounds,we identified mTOR signaling as a critical pathway for the aberrant chondrogenesis of mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs). Two different HO mouse models,an FOP model mouse expressing FOP-ACVR1 and an FOP-iPSC-based HO model mouse,revealed critical roles for mTOR signaling in vivo. Moreover,we identified ENPP2,an enzyme that generates lysophosphatidic acid,as a linker of FOP-ACVR1 and mTOR signaling in chondrogenesis. These results uncovered the crucial role of the Activin-A/FOP-ACVR1/ENPP2/mTOR axis in FOP pathogenesis.
View Publication
文献
Alshawaf AJ et al. ( 2017)
Stem cells international 2017 7848932
WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells.
Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker,TBR2,and also glial marker,S100β. In contrast,inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers,PAX6 and EAAT1,respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation.
View Publication
文献
Lukovic D et al. (MAY 2017)
Stem cell research 21 23--25
Generation of a human iPSC line from a patient with retinitis pigmentosa caused by mutation in PRPF8 gene.
The human iPSC cell line,RP2-FiPS4F1 (RCPFi001-A),derived from dermal fibroblasts from the patient with retinitis pigmentosa caused by the mutation of the gene PRPF8,was generated by non-integrative reprogramming technology using OCT3/4,SOX2,CMYC and KLF4 reprogramming factors.
View Publication
文献
Varga E et al. (MAY 2017)
Stem cell research 21 19--22
Establishment of an induced pluripotent stem cell (iPSC) line from a 9-year old male with autism spectrum disorder (ASD).
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically characterized patient with autism spectrum disorder (ASD). The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus delivery system. The pluripotency of transgene-free iPSCs was verified by immunocytochemistry for pluripotency markers and by spontaneous in vitro differentiation towards the 3 germ layers. Furthermore,the iPSC line showed normal karyotype. Our model might offer a good platform to study the pathomechanism of ASD,also for drug testing,early biomarker discovery and gene therapy studies.
View Publication
文献
Ounpuu L et al. (MAY 2017)
Biochimica et biophysica acta
2102Ep embryonal carcinoma cells have compromised respiration and shifted bioenergetic profile distinct from H9 human embryonic stem cells.
Recent studies have shown that cellular bioenergetics may be involved in stem cell differentiation. Considering that during cancerogenesis cells acquire numerous properties of stem cells,it is possible to assume that the energy metabolism in tumorigenic cells might be differently regulated. The aim of this study was to compare the mitochondrial bioenergetic profile of normal pluripotent human embryonic stem cells (hESC) and relatively nullipotent embryonal carcinoma cells (2102Ep cell line). We examined three parameters related to cellular bioenergetics: phosphotransfer system,aerobic glycolysis,and oxygen consumption. Activities and expression levels of main enzymes that facilitate energy transfer were measured. The oxygen consumption rate studies were performed to investigate the respiratory capacity of cells. 2102Ep cells showed a shift in energy distribution towards adenylate kinase network. The total AK activity was almost 3 times higher in 2102Ep cells compared to hESCs (179.85±5.73 vs 64.39±2.55mU/mg of protein) and the expression of AK2 was significantly higher in these cells,while CK was downregulated. 2102Ep cells displayed reduced levels of oxygen consumption and increased levels of aerobic glycolysis compared to hESCs. The compromised respiration of 2102Ep cells is not the result of increased mitochondrial mass,increased proton leak,and reduced respiratory reserve capacity of the cells or impairment of respiratory chain complexes. Our data showed that the bioenergetic profile of 2102Ep cells clearly distinguishes them from normal hESCs. This should be considered when this cell line is used as a reference,and highlight the importance of further research concerning energy metabolism of stem cells.
View Publication
文献
Artyukhov AS et al. (MAY 2017)
Gene
New genes for accurate normalization of qRT-PCR results in study of iPS and iPS-derived cells.
iPSC-derived cells (from induced pluripotent stem cells) are a useful source that provide a powerful and widely accepted tool for the study of various types of human cells in vitro. Indeed,iPSC-derived cells from patients with hereditary diseases have been shown to reproduce the hallmarks of these diseases in vitro,phenotypes that can then also be manipulated in vitro. Quantitative reverse transcription PCR (qRT-PCR) is often used to characterize the progress of iPSC differentiation,validate mature cell types and to determine levels of pathological markers. Quantitative reverse transcription PCR (qRT-PCR) is used to quantify mRNA levels. This method requires some way of normalizing the data,typically by relating the obtained levels of gene expression to the levels of expression of a house keeping gene"�
View Publication
文献
Velasquez-Mao AJ et al. ( 2017)
PloS one 12 5 e0177824
Differentiation of spontaneously contracting cardiomyocytes from non-virally reprogrammed human amniotic fluid stem cells.
Congenital heart defects are the most common birth defect. The limiting factor in tissue engineering repair strategies is an autologous source of functional cardiomyocytes. Amniotic fluid contains an ideal cell source for prenatal harvest and use in correction of congenital heart defects. This study aims to investigate the potential of amniotic fluid-derived stem cells (AFSC) to undergo non-viral reprogramming into induced pluripotent stem cells (iPSC) followed by growth-factor-free differentiation into functional cardiomyocytes. AFSC from human second trimester amniotic fluid were transfected by non-viral vesicle fusion with modified mRNA of OCT4,KLF4,SOX2,LIN28,cMYC and nuclear GFP over 18 days,then differentiated using inhibitors of GSK3 followed 48 hours later by inhibition of WNT. AFSC-derived iPSC had high expression of OCT4,NANOG,TRA-1-60,and TRA-1-81 after 18 days of mRNA transfection and formed teratomas containing mesodermal,ectodermal,and endodermal germ layers in immunodeficient mice. By Day 30 of cardiomyocyte differentiation,cells contracted spontaneously,expressed connexin 43 and β-myosin heavy chain organized in sarcomeric banding patterns,expressed cardiac troponin T and β-myosin heavy chain,showed upregulation of NKX2.5,ISL-1 and cardiac troponin T with downregulation of POU5F1,and displayed calcium and voltage transients similar to those in developing cardiomyocytes. These results demonstrate that cells from human amniotic fluid can be differentiated through a pluripotent state into functional cardiomyocytes.
View Publication
文献
Gu Q et al. (MAY 2017)
Advanced healthcare materials
3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation.
The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine,including individualized,patient-specific stem cell-based treatments. There are,however,few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues,ideally comprising direct-write printing of cells for encapsulation,proliferation,and differentiation. Here,such a method,employing a clinically amenable polysaccharide-based bioink,is described as the first example of bioprinting human iPSCs for in situ expansion and sequential differentiation. Specifically,There are extrusion printed the bioink including iPSCs,alginate (Al; 5% weight/volume [w/v]),carboxymethyl-chitosan (5% w/v),and agarose (Ag; 1.5% w/v),crosslinked the bioink in calcium chloride for a stable and porous construct,proliferated the iPSCs within the construct and differentiated the same iPSCs into either EBs comprising cells of three germ lineages-endoderm,ectoderm,and mesoderm,or more homogeneous neural tissues containing functional migrating neurons and neuroglia. This defined,scalable,and versatile platform is envisaged being useful in iPSC research and translation for pharmaceuticals development and regenerative medicine.
View Publication
文献
Guo M et al. (MAY 2017)
Cell reports 19 8 1512--1521
Using hESCs to Probe the Interaction of the Diabetes-Associated Genes CDKAL1 and MT1E.
Genome-wide association studies (GWASs) have identified many disease-associated variant alleles,but understanding whether and how different genes/loci interact requires a platform for probing how the variant alleles act mechanistically. Isogenic mutant human embryonic stem cells (hESCs) provide an unlimited resource to derive and study human disease-relevant cells. Here,we focused on CDKAL1,linked by GWASs to diabetes. Through transcript profiling,we find that expression of the metallothionein (MT) gene family,also linked by GWASs to diabetes,is significantly downregulated in CDKAL1(-/-) cells that have been differentiated to insulin-expressing pancreatic beta-like cells. Forced MT1E expression rescues both hypersensitivity of CDKAL1 mutant cells to glycolipotoxicity and pancreatic beta-cell dysfunction in vitro and in vivo. MT1E functions at least in part through relief of ER stress. This study establishes an isogenic hESC-based platform to study the interaction of GWAS-identified diabetes gene variants and illuminate the molecular network impacting disease progression.
View Publication
文献
Ward E et al. (MAY 2017)
Stem cells and development
Feeder-Free Derivation of Naïve Human Pluripotent Stem Cells.
Human pluripotent stem cells (HPSCs) cultured in conditions that maintain pluripotency via FGF and TGFβ signaling have been described as being in a primed state. These cells have been shown to exhibit characteristics more closely related to mouse epiblast-derived stem cells than to so called naïve mouse PSCs said to possess a more ground state pluripotency that mimics the early mouse embryo inner cell mass. Initial attempts to create culture conditions favorable for generation of naïve HPSCs from primed HPSCs has required the use of mouse embryonic fibroblasts as a feeder layer to support this transition. A protocol for the routine derivation and maintenance of naïve HPSCs in completely defined conditions is highly desirable for stem cell researchers to enhance the study and clinical translation of naïve HPSCs. Here we describe a standard protocol for transitioning primed HPSCs to a naïve state using commercial RSet media and xeno-free recombinant vitronectin.
View Publication
文献
Kim J et al. (MAY 2017)
Stem cell reports
Expansion and Purification Are Critical for the Therapeutic Application of Pluripotent Stem Cell-Derived Myogenic Progenitors.
Recent reports have documented the differentiation of human pluripotent stem cells toward the skeletal myogenic lineage using transgene- and cell purification-free approaches. Although these protocols generate myocytes,they have not demonstrated scalability,safety,and in vivo engraftment,which are key aspects for their future clinical application. Here we recapitulate one prominent protocol,and show that it gives rise to a heterogeneous cell population containing myocytes and other cell types. Upon transplantation,the majority of human donor cells could not contribute to myofiber formation. As a proof-of-principle,we incorporated the inducible PAX7 lentiviral system into this protocol,which then enabled scalable expansion of a homogeneous population of skeletal myogenic progenitors capable of forming myofibers in vivo. Our findings demonstrate the methods for scalable expansion of PAX7(+) myogenic progenitors and their purification are critical for practical application to cell replacement treatment of muscle degenerative diseases.
View Publication
文献
Douvaras P et al. (MAY 2017)
Stem cell reports
Directed Differentiation of Human Pluripotent Stem Cells to Microglia.
Microglia,the immune cells of the brain,are crucial to proper development and maintenance of the CNS,and their involvement in numerous neurological disorders is increasingly being recognized. To improve our understanding of human microglial biology,we devised a chemically defined protocol to generate human microglia from pluripotent stem cells. Myeloid progenitors expressing CD14/CX3CR1 were generated within 30 days of differentiation from both embryonic and induced pluripotent stem cells (iPSCs). Further differentiation of the progenitors resulted in ramified microglia with highly motile processes,expressing typical microglial markers. Analyses of gene expression and cytokine release showed close similarities between iPSC-derived (iPSC-MG) and human primary microglia as well as clear distinctions from macrophages. iPSC-MG were able to phagocytose and responded to ADP by producing intracellular Ca(2+) transients,whereas macrophages lacked such response. The differentiation protocol was highly reproducible across several pluripotent stem cell lines.
View Publication