T. W. Braun et al. (mar 2022)
STAR protocols 3 1 101070
FACS and immunomagnetic isolation of early erythroid progenitor cells from mouse fetal liver.
Early erythroid progenitors are transit-amplifying cells with high proliferative capacity committed to undergoing red cell differentiation. CD71/CD24low progenitors are less mature and have greater proliferative capacity than CD71/CD24high. We present protocols for isolation of CD71/CD24low progenitors from mouse fetal liver using both fluorescence-activated cell sorting (FACS) and immunomagnetic enrichment. CD71/CD24low progenitors isolated with both approaches show similar transcriptomes at single-cell resolution and exhibit characteristic proliferative responses to glucocorticoids. For complete details on the use and execution of this protocol,please refer to Li et al. (2019).
View Publication
文献
J. L. Hope et al. (feb 2022)
Journal of immunology (Baltimore,Md. : 1950) 208 3 603--617
MicroRNA-139 Expression Is Dispensable for the Generation of Influenza-Specific CD8+ T Cell Responses.
MicroRNAs (miRNAs/miRs) are small,endogenous noncoding RNAs that are important post-transcriptional regulators with clear roles in the development of the immune system and immune responses. Using miRNA microarray profiling,we characterized the expression profile of naive and in vivo generated murine effector antiviral CD8+ T cells. We observed that out of 362 measurable mature miRNAs,120 were differentially expressed by at least 2-fold in influenza-specific effector CD8+ CTLs compared with naive CD8+ T cells. One miRNA found to be highly downregulated on both strands in effector CTLs was miR-139. Because previous studies have indicated a role for miR-139-mediated regulation of CTL effector responses,we hypothesized that deletion of miR-139 would enhance antiviral CTL responses during influenza virus infection. We generated miR-139-/- mice or overexpressed miR-139 in T cells to assess the functional contribution of miR-139 expression in CD8+ T cell responses. Our study demonstrates that the development of naive T cells and generation or differentiation of effector or memory CD8+ T cell responses to influenza virus infection are not impacted by miR-139 deficiency or overexpression; yet,miR-139-/- CD8+ T cells are outcompeted by wild-type CD8+ T cells in a competition setting and demonstrate reduced responses to Listeria monocytogenes Using an in vitro model of T cell exhaustion,we confirmed that miR-139 expression similarly does not impact the development of T cell exhaustion. We conclude that despite significant downregulation of miR-139 following in vivo and in vitro activation,miR-139 expression is dispensable for influenza-specific CTL responses.
View Publication
文献
M. Seyfrid et al. (jan 2022)
Journal for immunotherapy of cancer 10 1
CD70 as an actionable immunotherapeutic target in recurrent glioblastoma and its microenvironment.
PURPOSE Glioblastoma (GBM) patients suffer from a dismal prognosis,with standard of care therapy inevitably leading to therapy-resistant recurrent tumors. The presence of cancer stem cells (CSCs) drives the extensive heterogeneity seen in GBM,prompting the need for novel therapies specifically targeting this subset of tumor-driving cells. Here,we identify CD70 as a potential therapeutic target for recurrent GBM CSCs. EXPERIMENTAL DESIGN In the current study,we identified the relevance and functional influence of CD70 on primary and recurrent GBM cells,and further define its function using established stem cell assays. We use CD70 knockdown studies,subsequent RNAseq pathway analysis,and in vivo xenotransplantation to validate CD70's role in GBM. Next,we developed and tested an anti-CD70 chimeric antigen receptor (CAR)-T therapy,which we validated in vitro and in vivo using our established preclinical model of human GBM. Lastly,we explored the importance of CD70 in the tumor immune microenvironment (TIME) by assessing the presence of its receptor,CD27,in immune infiltrates derived from freshly resected GBM tumor samples. RESULTS CD70 expression is elevated in recurrent GBM and CD70 knockdown reduces tumorigenicity in vitro and in vivo. CD70 CAR-T therapy significantly improves prognosis in vivo. We also found CD27 to be present on the cell surface of multiple relevant GBM TIME cell populations,notably putative M1 macrophages and CD4 T cells. CONCLUSION CD70 plays a key role in recurrent GBM cell aggressiveness and maintenance. Immunotherapeutic targeting of CD70 significantly improves survival in animal models and the CD70/CD27 axis may be a viable polytherapeutic avenue to co-target both GBM and its TIME.
View Publication
文献
E. Xu et al. (jan 2022)
Molecular neurodegeneration 17 1 7
Pathological $\alpha$-synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain.
BACKGROUND Leucine rich repeat kinase 2 (LRRK2) and SNCA are genetically linked to late-onset Parkinson's disease (PD). Aggregated $\alpha$-synuclein pathologically defines PD. Recent studies identified elevated LRRK2 expression in pro-inflammatory CD16+ monocytes in idiopathic PD,as well as increased phosphorylation of the LRRK2 kinase substrate Rab10 in monocytes in some LRRK2 mutation carriers. Brain-engrafting pro-inflammatory monocytes have been implicated in dopaminergic neurodegeneration in PD models. Here we examine how $\alpha$-synuclein and LRRK2 interact in monocytes and subsequent neuroinflammatory responses. METHODS Human and mouse monocytes were differentiated to distinct transcriptional states resembling macrophages,dendritic cells,or microglia,and exposed to well-characterized human or mouse $\alpha$-synuclein fibrils. LRRK2 expression and LRRK2-dependent Rab10 phosphorylation were measured with monoclonal antibodies,and myeloid cell responses to $\alpha$-synuclein fibrils in R1441C-Lrrk2 knock-in mice or G2019S-Lrrk2 BAC mice were evaluated by flow cytometry. Chemotaxis assays were performed with monocyte-derived macrophages stimulated with $\alpha$-synuclein fibrils and microglia in Boyden chambers. RESULTS $\alpha$-synuclein fibrils robustly stimulate LRRK2 and Rab10 phosphorylation in human and mouse macrophages and dendritic-like cells. In these cells,$\alpha$-synuclein fibrils stimulate LRRK2 through JAK-STAT activation and intrinsic LRRK2 kinase activity in a feed-forward pathway that upregulates phosphorylated Rab10. In contrast,LRRK2 expression and Rab10 phosphorylation are both suppressed in microglia-like cells that are otherwise highly responsive to $\alpha$-synuclein fibrils. Corroborating these results,LRRK2 expression in the brain parenchyma occurs in pro-inflammatory monocytes infiltrating from the periphery,distinct from brain-resident microglia. Mice expressing pathogenic LRRK2 mutations G2019S or R1441C have increased numbers of infiltrating pro-inflammatory monocytes in acute response to $\alpha$-synuclein fibrils. In primary cultured macrophages,LRRK2 kinase inhibition dampens $\alpha$-synuclein fibril and microglia-stimulated chemotaxis. CONCLUSIONS Pathologic $\alpha$-synuclein activates LRRK2 expression and kinase activity in monocytes and induces their recruitment to the brain. These results predict that LRRK2 kinase inhibition may attenuate damaging pro-inflammatory monocyte responses in the brain.
View Publication
文献
M. Kono et al. ( 2022)
Oncoimmunology 11 1 2021619
Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor immunotherapy for head and neck squamous cell carcinoma.
Fibroblast growth factor receptor 1 (FGFR1) is overexpressed in multiple types of solid tumors,including head and neck squamous cell carcinoma (HNSCC). Being associated with poor prognosis,FGFR1 is a potential therapeutic target for aggressive tumors. T cell-based cancer immunotherapy has played a central role in novel cancer treatments. However,the potential of antitumor immunotherapy targeting FGFR1 has not been investigated. Here,we showed that FGFR-tyrosine kinase inhibitors (TKIs) augmented antitumor effects of immune checkpoint inhibitors in an HNSCC mouse model and upregulated tumoral MHC class I and MHC class II expression in vivo and in vitro. This upregulation was associated with the mitogen-activated protein kinase signaling pathway,which is a crucial pathway for cancer development through FGFR signaling. Moreover,we identified an FGFR1-derived peptide epitope (FGFR1305-319) that could elicit antigen-reactive and multiple HLA-restricted CD4+ T cell responses. These T cells showed direct cytotoxicity against tumor cells that expressed FGFR1. Notably,FGFR-TKIs augmented antitumor effects of FGFR1-reactive T cells against human HNSCC cells. These results indicate that the combination of FGFR-TKIs with immunotherapy,such as an FGFR1-targeting peptide vaccine or immune checkpoint inhibitor,could be a novel and robust immunologic approach for treating patients with FGFR1-expressing cancer cells.
View Publication
文献
F. Shahneh et al. (feb 2022)
Arteriosclerosis,thrombosis,and vascular biology 42 2 145--155
Inflammatory Monocyte Counts Determine Venous Blood Clot Formation and Resolution.
BACKGROUND Monocytes are thought to be involved in venous thrombosis but the role of individual monocyte subpopulations on thrombus formation,clot inflammation,and degradation is an important unresolved issue. We investigate the role of inflammatory Ly6Chi monocytes in deep vein thrombosis and their potential therapeutic impact. METHODS Frequencies and compositions of blood monocytes were analyzed by flow cytometry in CCR2-/- (C-C chemokine receptor type 2) and wild-type mice of different ages and after treatment with the NR4A1 (nuclear receptor group 4 family A member 1,Nur77) agonist CnsB (cytosporone B). TF (tissue factor) sufficient and deficient Ly6Chi monocytes were adoptively transferred into aged CCR2-/- mice. Thrombus formation and size were followed by ultrasound over a 3-week period after surgical reduction of blood flow (stenosis) in the inferior vena cava. RESULTS Reduced numbers of peripheral monocytes in aged (>30 w) CCR2-/- mice are accompanied by reduced thrombus formation after inferior vena cava ligation. Reducing the number of inflammatory Ly6Chi monocytes in wild-type mice by CsnB treatment before ligation,similarly suspends clotting,while later treatment (d1 or d4) reduces thrombus growth and accelerates resolution. We describe how changes in inflammatory monocyte numbers affect the gradual differentiation of monocytes in thrombi and show that only tissue factor-competent Ly6Chi monocytes restore thrombosis in aged CCR2-/- mice. CONCLUSIONS We conclude that the number of inflammatory Ly6Chi monocytes controls deep vein thrombosis formation,growth,and resolution and can be therapeutically manipulated with a NR4A1 agonist at all disease stages.
View Publication
文献
A. Xu et al. (jan 2022)
Journal of immunology (Baltimore,Md. : 1950) 208 1 155--168
Prosurvival IL-7-Stimulated Weak Strength of mTORC1-S6K Controls T Cell Memory via Transcriptional FOXO1-TCF1-Id3 and Metabolic AMPK$\alpha$1-ULK1-ATG7 Pathways.
CD8+ memory T (TM) cells play a critical role in immune defense against infection. Two common $\gamma$-chain family cytokines,IL-2 and IL-7,although triggering the same mTORC1-S6K pathway,distinctly induce effector T (TE) cells and TM cells,respectively,but the underlying mechanism(s) remains elusive. In this study,we generated IL-7R-/and AMPK$\alpha$1-knockout (KO)/OTI mice. By using genetic and pharmaceutical tools,we demonstrate that IL-7 deficiency represses expression of FOXO1,TCF1,p-AMPK$\alpha$1 (T172),and p-ULK1 (S555) and abolishes T cell memory differentiation in IL-7R KO T cells after Listeria monocytogenesis rLmOVA infection. IL-2- and IL-7-stimulated strong and weak S6K (IL-2/S6Kstrong and IL-7/S6Kweak) signals control short-lived IL-7R-CD62L-KLRG1+ TE and long-term IL-7R+CD62L+KLRG1- TM cell formations,respectively. To assess underlying molecular pathway(s),we performed flow cytometry,Western blotting,confocal microscopy,and Seahorse assay analyses by using the IL-7/S6Kweak-stimulated TM (IL-7/TM) and the control IL-2/S6Kstrong-stimulated TE (IL-2/TE) cells. We determine that the IL-7/S6Kweak signal activates transcriptional FOXO1,TCF1,and Id3 and metabolic p-AMPK$\alpha$1,p-ULK1,and ATG7 molecules in IL-7/TM cells. IL-7/TM cells upregulate IL-7R and CD62L,promote mitochondria biogenesis and fatty acid oxidation metabolism,and show long-term cell survival and functional recall responses. Interestingly,AMPK$\alpha$1 deficiency abolishes the AMPK$\alpha$1 but maintains the FOXO1 pathway and induces a metabolic switch from fatty acid oxidation to glycolysis in AMPK$\alpha$1 KO IL-7/TM cells,leading to loss of cell survival and recall responses. Taken together,our data demonstrate that IL-7-stimulated weak strength of mTORC1-S6K signaling controls T cell memory via activation of transcriptional FOXO1-TCF1-Id3 and metabolic AMPK$\alpha$1-ULK1-ATG7 pathways. This (to our knowledge) novel finding provides a new mechanism for a distinct IL-2/IL-7 stimulation model in T cell memory and greatly impacts vaccine development.
View Publication
文献
A. K. Jaiswal et al. (jan 2022)
American journal of physiology. Lung cellular and molecular physiology 322 1 L102--L115
Short palate, lung, and nasal epithelial clone 1 (SPLUNC1) level determines steroid-resistant airway inflammation in aging.
Asthma and its heterogeneity change with age. Increased airspace neutrophil numbers contribute to severe steroid-resistant asthma exacerbation in the elderly,which correlates with the changes seen in adults with asthma. However,whether that resembles the same disease mechanism and pathophysiology in aged and adults is poorly understood. Here,we sought to address the underlying molecular mechanism of steroid-resistant airway inflammation development and response to corticosteroid (Dex) therapy in aged mice. To study the changes in inflammatory mechanism,we used a clinically relevant treatment model of house-dust mite (HDM)-induced allergic asthma and investigated lung adaptive immune response in adult (20-22 wk old) and aged (80-82 wk old) mice. Our result indicates an age-dependent increase in airway hyperresponsiveness (AHR),mixed granulomatous airway inflammation comprising eosinophils and neutrophils,and Th1/Th17 immune response with progressive decrease in frequencies and numbers of HDM-bearing dendritic cells (DC) accumulation in the draining lymph node (DLn) of aged mice as compared with adult mice. RNA-Seq experiments of the aged lung revealed short palate,lung,and nasal epithelial clone 1 (SPLUNC1) as one of the steroid-responsive genes,which progressively declined with age and further by HDM-induced inflammation. Moreover,we found increased glycolytic reprogramming,maturation/activation of DCs,the proliferation of OT-II cells,and Th2 cytokine secretion with recombinant SPLUNC1 (rSPLUNC1) treatment. Our results indicate a novel immunomodulatory role of SPLUNC1 regulating metabolic adaptation/maturation of DC. An age-dependent decline in the SPLUNC1 level may be involved in developing steroid-resistant airway inflammation and asthma heterogeneity.
View Publication
文献
S. Nandagopal et al. (feb 2022)
Cancer immunology research 10 2 245--258
C3aR Signaling Inhibits NK-cell Infiltration into the Tumor Microenvironment in Mouse Models.
Many solid tumors have low levels of cytotoxic CD56dim natural killer (NK) cells,suggesting that CD56dim NK-cell exclusion from the tumor microenvironment (TME) contributes to the decreased response rate of immunotherapy. Complement component 3a (C3a) is known for its tumor-promoting and immunosuppressive roles in solid tumors. Previous reports have implicated the involvement of the C3a receptor (C3aR) in immune cell trafficking into the TME. C3aR is predominantly expressed on the surface of activated cytotoxic NK cells,but a specific role for C3aR in NK-cell biology has not been investigated. Because solid tumors generate elevated C3a and have decreased NK-cell infiltration,we hypothesized that C3aR might play a role in cytotoxic NK-cell recruitment into the TME. Our results indicate that blocking C3aR signaling in NK cells increased NK-cell infiltration into the TME in mouse models and led to tumor regression. Because the critical lymphocyte trafficking integrin LFA-1 orchestrates the migration of activated NK cells,we wanted to gain insight into the interaction between C3aR signaling and LFA-1. Our results demonstrated that direct interaction between C3aR and LFA-1,which led to a high-affinity LFA-1 conformation,decreased NK-cell infiltration into the TME. We propose that approaches to enhance cytotoxic NK-cell infiltration into the TME,through either disrupting C3a and C3aR interaction or inhibiting the formation of high-affinity LFA-1,represent a new strategy to improve the efficiency of immunotherapy for cancer treatment.
View Publication
文献
N. McNamee et al. (jan 2022)
Translational oncology 15 1 101274
A method of separating extracellular vesicles from blood shows potential clinical translation, and reveals extracellular vesicle cargo gremlin-1 as a diagnostic biomarker.
Extracellular vesicles (EVs) have potential as minimally invasive biomarkers. However,the methods most commonly used for EV retrieval rely on ultracentrifugation,are time-consuming,and unrealistic to translate to standard-of-care. We sought a method suitable for EV separation from blood that could be used in patient care. Sera from breast cancer patients and age-matched controls (n = 27 patients; n = 36 controls) were analysed to compare 6 proposed EV separation methods. The EVs were then characterised on 8 parameters. The selected method was subsequently applied to independent cohorts of sera (n = 20 patients; n = 20 controls),as proof-of-principle,investigating EVs' gremlin-1 cargo. Three independent runs with each method were very reproducible,within each given method. All isolates contained EVs,although they varied in quantity and purity. Methods that require ultracentrifugation were not superior for low volumes of sera typically available in routine standard-of-care. A CD63/CD81/CD9-coated immunobead-based method was most suitable based on EV markers' detection and minimal albumin and lipoprotein contamination. Applying this method to independent sera cohorts,EVs and their gremlin-1 cargo were at significantly higher amounts for breast cancer patients compared to controls. In conclusion,CD63/CD81/CD9-coated immunobeads may enable clinical utility of blood-based EVs as biomarkers.
View Publication
文献
S. Sinha et al. (jan 2022)
Nature medicine 28 1 201--211
Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19.
Although critical for host defense,innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS,compared to ARDS from other respiratory pathogens,is unclear. Moreover,mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using single-cell RNA sequencing and plasma proteomics,we discovered that,compared to bacterial ARDS,COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin signaling. Dexamethasone during severe COVID-19 affected circulating neutrophils,altered IFNactive neutrophils,downregulated interferon-stimulated genes and activated IL-1R2+ neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils and preferential steroid-induced immature neutrophil expansion,potentially affecting outcomes. Our single-cell atlas (see 'Data availability' section) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.
View Publication
文献
J. Bruminhent et al. (mar 2022)
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 22 3 813--822
SARS-CoV-2-specific humoral and cell-mediated immune responses after immunization with inactivated COVID-19 vaccine in kidney transplant recipients (CVIM 1 study).
Immunogenicity following inactivated SARS-CoV-2 vaccination among solid organ transplant recipients has not been assessed. Seventy-five patients (37 kidney transplant [KT] recipients and 38 healthy controls) received two doses,at 4-week intervals,of an inactivated whole-virus SARS-CoV-2 vaccine. SARS-CoV-2-specific humoral (HMI) and cell-mediated immunity (CMI) were measured before,4 weeks post-first dose,and 2 weeks post-second dose. The median (IQR) age of KT recipients was 50 (42-54) years and 89% were receiving calcineurin inhibitors/mycophenolate/corticosteroid regimens. The median (IQR) time since transplant was 4.5 (2-9.5) years. Among 35 KT patients,the median (IQR) of anti-RBD IgG level measured by CLIA after vaccination was not different from baseline,but was significantly lower than in controls (2.4 [1.1-3.7] vs. 1742.0 [747.7-3783.0] AU/ml,p < .01) as well as percentages of neutralizing antibody inhibition measured by surrogate viral neutralization test (0 [0-0] vs. 71.2 [56.8-92.2]%,p < .01). However,the median (IQR) of SARS-CoV-2 mixed peptides-specific T cell responses measured by ELISpot was significantly increased compared with baseline (30 [4-120] vs. 12 [0-56] T cells/106 PBMCs,p = .02) and not different from the controls. Our findings revealed weak HMI but comparable CMI responses in fully vaccinated KT recipients receiving inactivated SARS-CoV-2 vaccination compared to immunocompetent individuals (Thai Clinical Trials Registry,TCTR20210226002).
View Publication