Koul D et al. ( 2006)
Molecular cancer therapeutics 5 3 637--644
Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma.
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and Akt are important regulators of the phosphatidylinositol 3-kinase (PI3K) pathway and thus are important to the regulation of a wide spectrum of tumor-related biological processes. Akt regulates several critical cellular functions,including cell cycle progression; cell migration,invasion,and survival; and angiogenesis. Decreased expression of PTEN and overexpression of the Akt proto-oncogene,which is located downstream of PI3K,have been shown in a variety of cancers,including glioblastoma. Novel small-molecule inhibitors of receptors and signaling pathways,including inhibitors of the PI3K pathway,have shown antitumor activity,but inhibitors of Akt have not been examined. In this study,we tested our hypothesis that the pharmacologic inhibition of Akt has an antiproliferative effect on gliomas. We showed that two newly developed Akt inhibitors,KP-372-1 and KP-372-2 (herein called KP-1 and KP-2),effectively inhibited the PI3K/Akt signaling cascade. KP-1 and KP-2 blocked both the basal and epidermal growth factor-induced phosphorylation of Akt Ser473 at 125 and 250 nmol/L,which,in turn,reduced the activation of intracellular downstream targets of Akt,including GSK-3beta and p70s6k. Furthermore,the treatment of U87 and U251 glioma cells with 125 to 250 nmol/L KP-1 and KP2 for 48 hours inhibited cell growth by approximately 50%. This decrease in cell growth stemmed from the induction of apoptosis. Collectively,these results provide a strong rationale for the pharmacologic targeting of Akt for the treatment of gliomas.
View Publication
文献
Zeng Z et al. ( 2006)
Cancer research 66 7 3737--3746
Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia.
Phosphoinositol-3-kinase (PI3K)/protein kinase B (AKT) and Fms-like tyrosine kinase 3 (FLT3) signaling are aberrantly activated in acute myelogenous leukemia (AML) cells. Constitutively activated AKT and FLT3 regulate leukemia cell survival and resistance to chemotherapy. In this study,we investigated the effects of the novel multiple kinase inhibitor KP372-1 on the survival of AML cell lines and primary AML samples. KP372-1 directly inhibited the kinase activity of AKT,PDK1,and FLT3 in a concentration-dependent manner. Western blot analysis indicated that KP372-1 decreased the phosphorylation of AKT on both Ser(473) and Thr(308); abrogated the phosphorylation of p70S6 kinase,BAD,and Foxo3a via PI3K/AKT signaling; and down-regulated expression of PIM-1 through direct inhibition of FLT3. Treatment of AML cell lines with KP372-1 resulted in rapid generation of reactive oxygen species and stimulation of oxygen consumption,followed by mitochondrial depolarization,caspase activation,and phosphatidylserine externalization. KP372-1 induced pronounced apoptosis in AML cell lines and primary samples irrespective of their FLT3 status,but not in normal CD34(+) cells. Moreover,KP372-1 markedly decreased the colony-forming ability of primary AML samples (IC(50) textless 200 nmol/L) with minimal cytotoxic effects on normal progenitor cells. Taken together,our results show that the simultaneous inhibition of critical prosurvival kinases by KP372-1 leads to mitochondrial dysfunction and apoptosis of AML but not normal hematopoietic progenitor cells.
View Publication
文献
Radujkovic A et al. ( )
Anticancer research 26 3A 2169--77
Combination treatment of imatinib-sensitive and -resistant BCR-ABL-positive CML cells with imatinib and farnesyltransferase inhibitors.
BACKGROUND: Resistance to imatinib monotherapy frequently emerges in advanced stages of chronic myelogenous leukemia (CML),supporting the rationale for combination drug therapy. In the present study,the activities of the farnesyltransferase inhibitors (FTIs) L744,832 and LB42918,as single agents and in combination with imatinib,were investigated in different imatinib-sensitive and -resistant BCR-ABL-positive CML cells. MATERIALS AND METHODS: Growth inhibition of the cell lines and primary patient cells was assessed by MTT assays and colony-forming cell assays,respectively. Drug interactions were analyzed according to the median-effect method of Chou and Talalay. The determination of apoptotic cell death was performed by annexin V/propidium iodide staining. RESULTS: Combinations of both FTIs with imatinib displayed synergism or sensitization (potentiation) in all the cell lines tested. In primary chronic phase CML cells,additive and synergistic effects were discernible for the combination of imatinib plus L744,832 and imatinib plus LB42918,respectively. Annexin V/propidium iodide staining showed enhancement of imatinib-induced apoptosis with either drug combination,both in imatinib-sensitive and -resistant cells. CONCLUSION: The results indicated the potential of L744,832 and LB42918 as combination agents for CML patients on imatinib treatment.
View Publication
文献
Irish JM et al. (NOV 2006)
Blood 108 9 3135--42
Altered B-cell receptor signaling kinetics distinguish human follicular lymphoma B cells from tumor-infiltrating nonmalignant B cells.
The B-cell receptor (BCR) transmits life and death signals throughout B-cell development,and altered BCR signaling may be required for survival of B-lymphoma cells. We used single-cell signaling profiles to compare follicular lymphoma (FL) B cells and nonmalignant host B cells within individual patient biopsies and identified BCR-mediated signaling events specific to lymphoma B cells. Expression of CD20,Bcl-2,and BCR light chain isotype (kappa or lambda) distinguished FL tumor B-cell and nontumor host B-cell subsets within FL patient biopsies. BCR-mediated signaling via phosphorylation of Btk,Syk,Erk1/2,and p38 occurred more rapidly in tumor B cells from FL samples than in infiltrating nontumor B cells,achieved greater levels of per-cell signaling,and sustained this level of signaling for hours longer than nontumor B cells. The timing and magnitude of BCR-mediated signaling in nontumor B cells within an FL sample instead resembled that observed in mature B cells from the peripheral blood of healthy subjects. BCR signaling pathways that are potentiated specifically in lymphoma cells should provide new targets for therapeutic attention.
View Publication
文献
McKenna KC and Kapp JA (AUG 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 3 1599--608
Accumulation of immunosuppressive CD11b+ myeloid cells correlates with the failure to prevent tumor growth in the anterior chamber of the eye.
The purpose of these studies is to determine why an immunogenic tumor grows unchecked in the anterior chamber (a.c.) of the eye. The OVA-expressing EL4 tumor,E.G7-OVA,was injected into the a.c. or skin of immunocompetent and immunodeficient mice. Tumor growth and tumor-specific immune responses were monitored. Ocular tumor-infiltrating leukocytes were characterized phenotypically and functionally. Growth of E.G7-OVA was inhibited when limiting numbers of cells were injected in the skin but not in the a.c. of C57BL/6 mice,although both routes primed OVA-specific immune responses,which prevented the growth of a subsequent injection with E.G7-OVA in the skin or opposite eye. Tumor regression was OVA-specific because growth of the parental EL-4 tumor was not inhibited in primed mice. E.G7-OVA growth in the skin was not inhibited in immunodeficient Rag(-/-) or CD8 T cell-deficient mice,suggesting that CD8(+) CTLs mediate tumor elimination. CD8(+) T cell numbers were significantly increased in eyes of mice primed with E.G7-OVA,but few were detected in primary ocular tumors. Nevertheless,growth of E.G7-OVA was retarded in the a.c. of TCR-transgenic OT-I mice,and CD8(+) T cell numbers were increased within eyes,suggesting that tumor-specific CD8(+) CTLs migrated into and controlled primary ocular tumor growth. E.G7-OVA did not lose antigenicity or become immunosuppressive after 13 days of growth in the eye. However,CD11b(+) cells accumulated in primary ocular tumors and contained potent immunosuppressive activity when assayed in vitro. Thus,CD11b(+) cells that accumulate within the eye as tumors develop in the a.c. may contribute to immune evasion by primary ocular tumors by inhibiting CTLs within the eye.
View Publication
文献
Oved K et al. (FEB 2007)
Journal of immunology (Baltimore,Md. : 1950) 178 4 2307--17
A novel postpriming regulatory check point of effector/memory T cells dictated through antigen density threshold-dependent anergy.
CTLs act as the effector arm of the cell-mediated immune system to kill undesirable cells. Two processes regulate these effector cells to prevent self reactivity: a thymic selection process that eliminates autoreactive clones and a multistage activation or priming process that endows them with a license to kill cognate target cells. Hitherto no subsequent regulatory restrictions have been ascribed for properly primed and activated CTLs that are licensed to kill. In this study we show that CTLs possess a novel postpriming regulatory mechanism(s) that influences the outcome of their encounter with cognate target cells. This mechanism gauges the degree of Ag density,whereupon reaching a certain threshold significant changes occur that induce anergy in the effector T cells. The biological consequences of this Ag-induced postpriming control includes alterations in the expression of cell surface molecules that control immunological synapse activity and cytokine profiles and induce retarded cell proliferation. Most profound is genome-wide microarray analysis that demonstrates changes in the expression of genes related to membrane potential,TCR signal transduction,energy metabolism,and cell cycle control. Thus,a discernible and unique gene expression signature for anergy as a response to high Ag density has been observed. Consequently,activated T cells possess properties of a self-referential sensory organ. These studies identify a new postpriming control mechanism of CTL with anergenic-like properties. This mechanism extends our understanding of the control of immune function and regulation such as peripheral tolerance,viral infections,antitumor immune responses,hypersensitivity,and autoimmunity.
View Publication
文献
Carlsten M et al. (FEB 2007)
Cancer research 67 3 1317--25
DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells.
Although natural killer (NK) cells are well known for their ability to kill tumors,few studies have addressed the interactions between resting (nonactivated) NK cells and freshly isolated human tumors. Here,we show that human leukocyte antigen class I(low) tumor cells isolated directly from patients with advanced ovarian carcinoma trigger degranulation by resting allogeneic NK cells. This was paralleled by induction of granzyme B and caspase-6 activities in the tumor cells and significant tumor cell lysis. Ovarian carcinoma cells displayed ubiquitous expression of the DNAX accessory molecule-1 (DNAM-1) ligand PVR and sparse/heterogeneous expression of the NKG2D ligands MICA/MICB and ULBP1,ULBP2,and ULBP3. In line with the NK receptor ligand expression profiles,antibody-mediated blockade of activating receptor pathways revealed a dominant role for DNAM-1 and a complementary contribution of NKG2D signaling in tumor cell recognition. These results show that resting NK cells are capable of directly recognizing freshly isolated human tumor cells and identify ovarian carcinoma as a potential target for adoptive NK cell-based immunotherapy.
View Publication
文献
Schiavo R et al. ( )
Anticancer research 27 5A 3273--8
Establishment and characterization of a new Ewing's sarcoma cell line from a malignant pleural effusion.
BACKGROUND: Ewing's sarcoma cell lines may represent a good in vitro model for the understanding of tumor biology in this heterogeneous group of diseases. In the present study,we report the establishment and characterization of a primary Ewing's sarcoma cell line (LDS-Falck 01). MATERIALS AND METHODS: LDS-Falck 01 was generated from a malignant pleural effusion of a patient with metastatic peripheral primitive neuroectodermal tumor arising from the chest wall. Extensive characterization of the cells was accomplished using immunocytochemical,RT-PCR and cytogenetic studies. RESULTS: In vitro LDS-Falck 01 cells had both anchorage-dependent and -independent growth patterns. Immunocytochemical studies showed that cells were PAS-,vimentin-,CD99- and NSE-positive,EGFR- and CD117-negative. Cytogenetic analysis revealed a complex hyperdiploid karyotype with multiple chromosomal aberrations including an unbalanced translocation t(11;22)(q24;q12). The EWS/FLI1 chimeric transcript type 1 was detected. CONCLUSION: This cell line may represent a valid tool for investigating the biomolecular characteristics of this group of neoplasms and their sensitivity to therapeutic agents.
View Publication
文献
Darce JR et al. (DEC 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 11 7276--86
Regulated expression of BAFF-binding receptors during human B cell differentiation.
BAFF plays a central role in B-lineage cell biology; however,the regulation of BAFF-binding receptor (BBR) expression during B cell activation and differentiation is not completely understood. In this study,we provide a comprehensive ex vivo analysis of BBRs in human B-lineage cells at various stages of maturation,as well as describe the events that drive and regulate receptor expression. Our data reveal that B-lineage cells ranging from naive to plasma cells (PCs),excluding bone marrow PCs,express BAFF-R uniformly. In contrast,only tonsillar memory B cells (MB) and PCs,from both tonsil and bone marrow tissues,express BCMA. Furthermore,we show that TACI is expressed by MB cells and PCs,as well as a subpopulation of activated CD27(neg) B cells. In this regard,we demonstrate that TACI is inducible early upon B cell activation and this is independent of B cell turnover. In addition,we found that TACI expression requires activation of the ERK1/2 pathway,since its expression was blocked by ERK1/2-specific inhibitors. Expression of BAFF-R and B cell maturation Ag (BCMA) is also highly regulated and we demonstrate that BCMA expression is only acquired in MB cells and in a manner accompanied by loss of BAFF-R expression. This inverse expression coincides with MB cell differentiation into Ig-secreting cells (ISC),since blocking differentiation inhibited both induction of BCMA expression and loss of BAFF-R. Collectively,our data suggest that the BBR profile may serve as a footprint of the activation history and stage of differentiation of normal human B cells.
View Publication
文献
Daniels TR et al. (NOV 2007)
Molecular cancer therapeutics 6 11 2995--3008
Conjugation of an anti transferrin receptor IgG3-avidin fusion protein with biotinylated saporin results in significant enhancement of its cytotoxicity against malignant hematopoietic cells.
We have previously developed an antibody fusion protein composed of a mouse/human chimeric IgG3 specific for the human transferrin receptor genetically fused to avidin (anti-hTfR IgG3-Av) as a universal delivery system for cancer therapy. This fusion protein efficiently delivers biotinylated FITC into cancer cells via TfR-mediated endocytosis. In addition,anti-hTfR IgG3-Av alone exhibits intrinsic cytotoxic activity and interferes with hTfR recycling,leading to the rapid degradation of the TfR and lethal iron deprivation in certain malignant B-cell lines. We now report on the cytotoxic effects of a conjugate composed of anti-hTfR IgG3-Av and biotinylated saporin 6 (b-SO6),a toxin derived from the plant Saponaria officinalis that inhibits protein synthesis. Conjugation of anti-hTfR IgG3-Av with b-SO6 enhances the cytotoxic effect of the fusion protein in sensitive cells and also overcomes the resistance of malignant cells that show low sensitivity to the fusion protein alone. Our results show for the first time that loading anti-hTfR IgG3-Av with a biotinylated toxin enhances the cytotoxicity of the fusion protein alone. These results suggest that anti-hTfR IgG3-Av has great potential as a therapeutic agent for a wide range of applications due to its intrinsic cytotoxic activity plus its ability to deliver biotinylated molecules into cancer cells.
View Publication
文献
Arlot-Bonnemains Y et al. ( 2008)
Endocrine-related cancer 15 2 559--568
Effects of the Aurora kinase inhibitor VX-680 on anaplastic thyroid cancer-derived cell lines.
Anaplastic thyroid cancers (ATC) are aggressive tumors,which exhibit cell cycle misregulations leading to uncontrolled cellular proliferation and genomic instability. They fail to respond to chemotherapeutic agents and radiation therapy,and most patients die within a few months of diagnosis. In the present study,we evaluated the in vitro effects on ATC cells of VX-680,an inhibitor of the Aurora serine/threonine kinases involved in the regulation of multiple aspects of chromosome segregation and cytokinesis. The effects of VX-680 on proliferation,apoptosis,soft agar colony formation,cell cycle,and ploidy were tested on the ATC-derived cell lines CAL-62,8305C,8505C,and BHT-101. Treatment of the different ATC cells with VX-680 inhibited proliferation in a time- and dose-dependent manner,with the IC50 between 25 and 150 nM. The VX-680 significantly impaired the ability of the different cell lines to form colonies in soft agar. Analysis of caspase-3 activity showed that VX-680 induced apoptosis in the different cell lines. CAL-62 cells exposed for 12 h to VX-680 showed an accumulation of cells with textgreater or =4N DNA content. Time-lapse analysis demonstrated that VX-680-treated CAL-62 cells exit metaphase without dividing. Moreover,histone H3 phosphorylation was abrogated following VX-680 treatment. In conclusion,our data demonstrated that VX-680 is effective in reducing cell growth of different ATC-derived cell lines and warrant further investigation to exploit its potential therapeutic value for ATC treatment.
View Publication
文献
Yang L et al. (FEB 2009)
Biotechnology and bioengineering 102 2 521--34
Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells.
The optimization of a purely negative depletion,enrichment process for circulating tumor cells (CTCs) in the peripheral blood of head and neck cancer patients is presented. The enrichment process uses a red cell lysis step followed by immunomagnetic labeling,and subsequent depletion,of CD45 positive cells. A number of relevant variables are quantified,or attempted to be quantified,which control the performance of the enrichment process. Six different immunomagnetic labeling combinations were evaluated as well as the significant difference in performance with respect to the blood source: buffy coats purchased from the Red Cross,fresh,peripheral blood from normal donors,and fresh peripheral blood from human cancer patients. After optimization,the process is able to reduce the number of normal blood cells in a cancer patient's blood from 4.05 x 10(9) to 8.04 x 10(3) cells/mL and still recover,on average,2.32 CTC per mL of blood. For all of the cancer patient blood samples tested in which CTC were detected (20 out of 26 patients) the average recovery of CTCs was 21.7 per mL of blood,with a range of 282 to 0.53 CTC. Since the initial number of CTC in a patient's blood is unknown,and most probably varies from patient to patient,the recovery of the CTC is unknown. However,spiking studies of a cancer cell line into normal blood,and subsequent enrichment using the optimized protocol indicated an average recovery of approximately 83%. Unlike a majority of other published studies,this study focused on quantifying as many factors as possible to facilitate both the optimization of the process as well as provide information for current and future performance comparisons. The authors are not aware any other reported study which has achieved the performance reported here (a 5.66 log(10)) in a purely negative enrichment mode of operation. Such a mode of operation of an enrichment process provides significant flexibility in that it has no bias with respect to what attributes define a CTC; thereby allowing the researcher or clinician to use any maker they choose to define whether the final,enrich product contains CTCs or other cell type relevant to the specific question (i.e.,does the CTC have predominantly epithelial or mesenchymal characteristics?).
View Publication