Schenk S et al. (JAN 2007)
Stem cells (Dayton,Ohio) 25 1 245--51
Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor.
MSCs have received attention for their therapeutic potential in a number of disease states,including bone formation,diabetes,stem cell engraftment after marrow transplantation,graft-versus-host disease,and heart failure. Despite this diverse interest,the molecular signals regulating MSC trafficking to sites of injury are unclear. MSCs are known to transiently home to the freshly infarcted myocardium. To identify MSC homing factors,we determined chemokine expression pattern as a function of time after myocardial infarction (MI). We merged these profiles with chemokine receptors expressed on MSCs but not cardiac fibroblasts,which do not home after MI. This analysis identified monocyte chemotactic protein-3 (MCP-3) as a potential MSC homing factor. Overexpression of MCP-3 1 month after MI restored MSC homing to the heart. After serial infusions of MSCs,cardiac function improved in MCP-3-expressing hearts (88.7%,p textless .001) but not in control hearts (8.6%,p = .47). MSC engraftment was not associated with differentiation into cardiac myocytes. Rather,MSC engraftment appeared to result in recruitment of myofibroblasts and remodeling of the collagen matrix. These data indicate that MCP-3 is an MSC homing factor; local overexpression of MCP-3 recruits MSCs to sites of injured tissue and improves cardiac remodeling independent of cardiac myocyte regeneration.
View Publication
Pua HH et al. (JAN 2007)
The Journal of experimental medicine 204 1 25--31
A critical role for the autophagy gene Atg5 in T cell survival and proliferation.
Macroautophagy (hereafter referred to as autophagy) is a well-conserved intracellular degradation process. Recent studies examining cells lacking the autophagy genes Atg5 and Atg7 have demonstrated that autophagy plays essential roles in cell survival during starvation,in innate cell clearance of microbial pathogens,and in neural cell maintenance. However,the role of autophagy in T lymphocyte development and survival is not known. Here,we demonstrate that autophagosomes form in primary mouse T lymphocytes. By generating Atg5-/- chimeric mice,we found that Atg5-deficient T lymphocytes underwent full maturation. However,the numbers of total thymocytes and peripheral T and B lymphocytes were reduced in Atg5 chimeras. In the periphery,Atg5-/- CD8+ T lymphocytes displayed dramatically increased cell death. Furthermore,Atg5-/- CD4+ and CD8+ T cells failed to undergo efficient proliferation after TCR stimulation. These results demonstrate a critical role for Atg5 in multiple aspects of lymphocyte development and function and suggest that autophagy may be essential for both T lymphocyte survival and proliferation.
View Publication
Nair S et al. (JAN 2007)
Cancer research 67 1 371--80
Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity.
Depletion of CD4+CD25+ regulatory T cells (Treg) by treatment with alphaCD25 antibody synergizes with vaccination protocols to engender protective immunity in mice. The effectiveness of targeting CD25 to eliminate Treg is limited by the fact that CD25,the low-affinity interleukin-2 receptor,is up-regulated on conventional T cells. At present,foxp3 is the only product known to be exclusively expressed in Treg of mice. However,foxp3 is not expressed on the cell surface and hence cannot be targeted with antibodies. In this study,we tested the hypothesis that vaccination of mice against foxp3,a self-antigen expressed also in the thymus,is capable of stimulating foxp3-specific CTL that will cause the depletion of Treg and enhanced antitumor immunity. Vaccination of mice with foxp3 mRNA-transfected dendritic cells elicited a robust foxp3-specific CTL response and potentiated vaccine-induced protective immunity comparably with that of alphaCD25 antibody administration. In contrast to alphaCD25 antibody treatment,repeated foxp3 vaccination did not interfere with vaccine-induced protective immunity. Importantly,foxp3 vaccination led to the preferential depletion of foxp3-expressing Treg in the tumor but not in the periphery,whereas alphaCD25 antibody treatment led to depletion of Treg in both the tumor and the periphery. Targeting foxp3 by vaccination offers a specific and simpler protocol for the prolonged control of Treg that may be associated with reduced risk of autoimmunity,introducing an approach whereby specific depletion of cells is not limited to targeting products expressed on the cell surface.
View Publication
Pereira LE et al. (MAY 2007)
Journal of virology 81 9 4445--56
Simian immunodeficiency virus (SIV) infection influences the level and function of regulatory T cells in SIV-infected rhesus macaques but not SIV-infected sooty mangabeys.
Differences in clinical outcome of simian immunodeficiency virus (SIV) infection in disease-resistant African sooty mangabeys (SM) and disease-susceptible Asian rhesus macaques (RM) prompted us to examine the role of regulatory T cells (Tregs) in these two animal models. Results from a cross-sectional study revealed maintenance of the frequency and absolute number of peripheral Tregs in chronically SIV-infected SM while a significant loss occurred in chronically SIV-infected RM compared to uninfected animals. A longitudinal study of experimentally SIV-infected animals revealed a transient increase in the frequency of Tregs from baseline values following acute infection in RM,but no change in the frequency of Tregs occurred in SM during this period. Further examination revealed a strong correlation between plasma viral load (VL) and the level of Tregs in SIV-infected RM but not SM. A correlation was also noted in SIV-infected RM that control VL spontaneously or in response to antiretroviral chemotherapy. In addition,immunofluorescent cell count assays showed that while Treg-depleted peripheral blood mononuclear cells from RM led to a significant enhancement of CD4+ and CD8+ T-cell responses to select pools of SIV peptides,there was no detectable T-cell response to the same pool of SIV peptides in Treg-depleted cells from SIV-infected SM. Our data collectively suggest that while Tregs do appear to play a role in the control of viremia and the magnitude of the SIV-specific immune response in RM,their role in disease resistance in SM remains unclear.
View Publication
Reutershan J et al. (MAY 2007)
American journal of respiratory and critical care medicine 175 10 1027--35
RATIONALE: Excessive recruitment of polymorphonuclear leukocytes (PMNs) to the lung promotes acute lung injury (ALI). Chemokine receptors and adhesion molecules initiate leukocyte-endothelial interactions,but mediators of PMN migration through the alveolo-capillary membrane remain to be identified. p21-Activated kinase (PAK) is an effector of small GTPases and has been implicated in cell migration. OBJECTIVES: To test the role of PAK in ALI. METHODS: An inhibitory PAK peptide was used to determine the role of PAK in cytoskeletal actin polymerization,cell adhesion,and oxidative burst. PMN migration was investigated in vitro and in a murine model of lipopolysaccharide-induced lung injury. MEASUREMENTS AND MAIN RESULTS: PMN migration into lung interstitium and alveolar space was suppressed by an inhibitory PAK peptide. Neutrophils that had taken up the inhibitory PAK peptide were unable to enter the alveolar space. CXCL2/3,an important PMN chemoattractant in murine lung injury,induced PAK phosphorylation in PMNs. Blocking PAK function inhibited chemotaxis,chemokine-induced cytoskeletal actin polymerization,and adhesion-induced oxidative burst. CONCLUSIONS: We conclude that neutrophil PAK is a critical mediator of PMN migration and may be an attractive target in ALI.
View Publication
Cemerski S et al. (MAR 2007)
Immunity 26 3 345--55
The stimulatory potency of T cell antigens is influenced by the formation of the immunological synapse.
T cell activation is predicated on the interaction between the T cell receptor and peptide-major histocompatibility (pMHC) ligands. The factors that determine the stimulatory potency of a pMHC molecule remain unclear. We describe results showing that a peptide exhibiting many hallmarks of a weak agonist stimulates T cells to proliferate more than the wild-type agonist ligand. An in silico approach suggested that the inability to form the central supramolecular activation cluster (cSMAC) could underlie the increased proliferation. This conclusion was supported by experiments that showed that enhancing cSMAC formation reduced stimulatory capacity of the weak peptide. Our studies highlight the fact that a complex interplay of factors determines the quality of a T cell antigen.
View Publication
Leung CG et al. (JUL 2007)
The Journal of experimental medicine 204 7 1603--11
Requirements for survivin in terminal differentiation of erythroid cells and maintenance of hematopoietic stem and progenitor cells.
Survivin,which is the smallest member of the inhibitor of apoptosis protein (IAP) family,is a chromosomal passenger protein that mediates the spindle assembly checkpoint and cytokinesis,and also functions as an inhibitor of apoptosis. Frequently overexpressed in human cancers and not expressed in most adult tissues,survivin has been proposed as an attractive target for anticancer therapies and,in some cases,has even been touted as a cancer-specific gene. Survivin is,however,expressed in proliferating adult cells,including human hematopoietic stem cells,T-lymphocytes,and erythroid cells throughout their maturation. Therefore,it is unclear how survivin-targeted anticancer therapies would impact steady-state blood development. To address this question,we used a conditional gene-targeting strategy and abolished survivin expression from the hematopoietic compartment of mice. We show that inducible deletion of survivin leads to ablation of the bone marrow,with widespread loss of hematopoietic progenitors and rapid mortality. Surprisingly,heterozygous deletion of survivin causes defects in erythropoiesis in a subset of the animals,with a dramatic reduction in enucleated erythrocytes and the presence of immature megaloblastic erythroblasts. Our studies demonstrate that survivin is essential for steady-state hematopoiesis and survival of the adult,and further,that a high level of survivin expression is critical for proper erythroid differentiation.
View Publication
Nguyen CQ et al. (JUL 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 1 382--90
IL-4-STAT6 signal transduction-dependent induction of the clinical phase of Sjögren's syndrome-like disease of the nonobese diabetic mouse.
NOD.B10-H2(b) and NOD/LtJ mice manifest,respectively,many features of primary and secondary Sjögren's syndrome (SjS),an autoimmune disease affecting primarily the salivary and lacrimal glands leading to xerostomia (dry mouth) and xerophthalmia (dry eyes). B lymphocytes play a central role in the onset of SjS with clinical manifestations dependent on the appearance of autoantibodies reactive to multiple components of acinar cells. Previous studies with NOD.IL4(-/-) and NOD.B10-H2(b).IL4(-/-) mice suggest that the Th2 cytokine,IL-4,plays a vital role in the development and onset of SjS-like disease in the NOD mouse model. To investigate the molecular mechanisms by which IL-4 controls SjS development,a Stat6 gene knockout mouse,NOD.B10-H2(b).C-Stat6(-/-),was constructed and its disease profile was defined and compared with that of NOD.B10-H2(b).C-Stat6(+/+) mice. As the NOD.B10-H2(b).C-Stat6(-/-) mice aged from 4 to 24 wk,they exhibited leukocyte infiltration of the exocrine glands,produced anti-nuclear autoantibodies,and showed loss and gain of saliva-associated proteolytic enzymes,similar to NOD.B10-H2(b).C-Stat6(+/+) mice. In contrast,NOD.B10-H2(b).C-Stat6(-/-) mice failed to develop glandular dysfunction,maintaining normal saliva flow rates. NOD.B10-H2(b).C-Stat6(-/-) mice were found to lack IgG1 isotype-specific anti-muscarinic acetylcholine type-3 receptor autoantibodies. Furthermore,the IgG fractions from NOD.B10-H2(b).C-Stat6(-/-) sera were unable to induce glandular dysfunction when injected into naive recipient C57BL/6 mice. NOD.B10-H2(b).C-Stat6(-/-) mice,like NOD.B10-H2(b).IL4(-/-) mice,are unable to synthesize IgG1 Abs,an observation that correlates with an inability to develop end-stage clinical SjS-like disease. These data imply a requirement for the IL-4/STAT6-pathway for onset of the clinical phase of SjS-like disease in the NOD mouse model.
View Publication
Guan H et al. (JUL 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 1 590--6
NK cells enhance dendritic cell response against parasite antigens via NKG2D pathway.
Recent studies have shown that NK-dendritic cell (DC) interaction plays an important role in the induction of immune response against tumors and certain viruses. Although the effect of this interaction is bidirectional,the mechanism or molecules involved in this cross-talk have not been identified. In this study,we report that coculture with NK cells causes several fold increase in IL-12 production by Toxoplasma gondii lysate Ag-pulsed DC. This interaction also leads to stronger priming of Ag-specific CD8+ T cell response by these cells. In vitro blockade of NKG2D,a molecule present on human and murine NK cells,neutralizes the NK cell-induced up-regulation of DC response. Moreover,treatment of infected animals with Ab to NKG2D receptor compromises the development of Ag-specific CD8+ T cell immunity and reduces their ability to clear parasites. These studies emphasize the critical role played by NKG2D in the NK-DC interaction,which apparently is important for the generation of robust CD8+ T cell immunity against intracellular pathogens. To the best of our knowledge,this is the first work that describes in vivo importance of NKG2D during natural infection.
View Publication
Billard E et al. (OCT 2007)
Infection and immunity 75 10 4980--9
Brucella suis prevents human dendritic cell maturation and antigen presentation through regulation of tumor necrosis factor alpha secretion.
Brucella is a facultative intracellular pathogen and the etiological agent of brucellosis. In some cases,human brucellosis results in a persistent infection that may reactivate years after the initial exposure. The mechanisms by which the parasite evades clearance by the immune response to chronically infect its host are unknown. We recently demonstrated that dendritic cells (DCs),which are critical components of adaptive immunity,are highly susceptible to Brucella infection and are a preferential niche for the development of the bacteria. Here,we report that in contrast to several intracellular bacteria,Brucella prevented the infected DCs from engaging in their maturation process and impaired their capacities to present antigen to naïve T cells and to secrete interleukin-12. Moreover,Brucella-infected DCs failed to release tumor necrosis factor alpha (TNF-alpha),a defect involving the bacterial protein Omp25. Exogenous TNF-alpha addition to Brucella-infected DCs restored cell maturation and allowed them to present antigens. Two avirulent mutants of B. suis,B. suis bvrR and B. suis omp25 mutants,which do not express the Omp25 protein,triggered TNF-alpha production upon DC invasion. Cells infected with these mutants subsequently matured and acquired the ability to present antigens,two properties which were dramatically impaired by addition of anti-TNF-alpha antibodies. In light of these data,we propose a model in which virulent Brucella alters the maturation and functions of DCs through Omp25-dependent control of TNF-alpha production. This model defines a specific evasion strategy of the bacteria by which they can escape the immune response to chronically infect their host.
View Publication
Lalli PN et al. (NOV 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 9 5793--802
Decay accelerating factor can control T cell differentiation into IFN-gamma-producing effector cells via regulating local C5a-induced IL-12 production.
A newly recognized link between the complement system and adaptive immunity is that decay accelerating factor (DAF),a cell surface C3/C5 convertase regulator,exerts control over T cell responses. Extending these results,we show that cultures of Marilyn TCR-transgenic T cells stimulated with DAF-deficient (Daf1(-/-)) APCs produce significantly more IL-12,C5a,and IFN-gamma compared with cultures containing wild-type APCs. DAF-regulated IL-12 production and subsequent T cell differentiation into IFN-gamma-producing effectors was prevented by the deficiency of either C3 or C5a receptor (C5aR) in the APC,demonstrating a link between DAF,local complement activation,IL-12,and T cell-produced IFN-gamma. Bone marrow chimera experiments verified that bone marrow cell-expressed C5aR is required for optimal differentiation into IFN-gamma-producing effector T cells. Overall,our results indicate that APC-expressed DAF regulates local production/activation of C5a following cognate T cell/APC interactions. Through binding to its receptor on APCs the C5a up-regulates IL-12 production,this in turn,contributes to directing T cell differentiation toward an IFN-gamma-producing phenotype. The findings have implications for design of therapies aimed at altering pathologic T cell immunity.
View Publication
Darce JR et al. (DEC 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 11 7276--86
Regulated expression of BAFF-binding receptors during human B cell differentiation.
BAFF plays a central role in B-lineage cell biology; however,the regulation of BAFF-binding receptor (BBR) expression during B cell activation and differentiation is not completely understood. In this study,we provide a comprehensive ex vivo analysis of BBRs in human B-lineage cells at various stages of maturation,as well as describe the events that drive and regulate receptor expression. Our data reveal that B-lineage cells ranging from naive to plasma cells (PCs),excluding bone marrow PCs,express BAFF-R uniformly. In contrast,only tonsillar memory B cells (MB) and PCs,from both tonsil and bone marrow tissues,express BCMA. Furthermore,we show that TACI is expressed by MB cells and PCs,as well as a subpopulation of activated CD27(neg) B cells. In this regard,we demonstrate that TACI is inducible early upon B cell activation and this is independent of B cell turnover. In addition,we found that TACI expression requires activation of the ERK1/2 pathway,since its expression was blocked by ERK1/2-specific inhibitors. Expression of BAFF-R and B cell maturation Ag (BCMA) is also highly regulated and we demonstrate that BCMA expression is only acquired in MB cells and in a manner accompanied by loss of BAFF-R expression. This inverse expression coincides with MB cell differentiation into Ig-secreting cells (ISC),since blocking differentiation inhibited both induction of BCMA expression and loss of BAFF-R. Collectively,our data suggest that the BBR profile may serve as a footprint of the activation history and stage of differentiation of normal human B cells.
View Publication