Engineering a stable and selective peptide blocker of the Kv1.3 channel in T lymphocytes.
Kv1.3 potassium channels maintain the membrane potential of effector memory (T(EM)) T cells that are important mediators of multiple sclerosis,type 1 diabetes mellitus,and rheumatoid arthritis. The polypeptide ShK-170 (ShK-L5),containing an N-terminal phosphotyrosine extension of the Stichodactyla helianthus ShK toxin,is a potent and selective blocker of these channels. However,a stability study of ShK-170 showed minor pH-related hydrolysis and oxidation byproducts that were exacerbated by increasing temperatures. We therefore engineered a series of analogs to minimize the formation of these byproducts. The analog with the greatest stability,ShK-192,contains a nonhydrolyzable phosphotyrosine surrogate,a methionine isostere,and a C-terminal amide. ShK-192 shows the same overall fold as ShK,and there is no evidence of any interaction between the N-terminal adduct and the rest of the peptide. The docking configuration of ShK-192 in Kv1.3 shows the N-terminal para-phosphonophenylalanine group lying at the junction of two channel monomers to form a salt bridge with Lys(411) of the channel. ShK-192 blocks Kv1.3 with an IC(50) of 140 pM and exhibits greater than 100-fold selectivity over closely related channels. After a single subcutaneous injection of 100 microg/kg,approximately 100 to 200 pM concentrations of active peptide is detectable in the blood of Lewis rats 24,48,and 72 h after the injection. ShK-192 effectively inhibits the proliferation of T(EM) cells and suppresses delayed type hypersensitivity when administered at 10 or 100 microg/kg by subcutaneous injection once daily. ShK-192 has potential as a therapeutic for autoimmune diseases mediated by T(EM) cells.
View Publication
文献
Dunbar AJ et al. (DEC 2008)
Cancer research 68 24 10349--57
250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies.
Two types of acquired loss of heterozygosity are possible in cancer: deletions and copy-neutral uniparental disomy (UPD). Conventionally,copy number losses are identified using metaphase cytogenetics,whereas detection of UPD is accomplished by microsatellite and copy number analysis and as such,is not often used clinically. Recently,introduction of single nucleotide polymorphism (SNP) microarrays has allowed for the systematic and sensitive detection of UPD in hematologic malignancies and other cancers. In this study,we have applied 250K SNP array technology to detect previously cryptic chromosomal changes,particularly UPD,in a cohort of 301 patients with myelodysplastic syndromes (MDS),overlap MDS/myeloproliferative disorders (MPD),MPD,and acute myeloid leukemia. We show that UPD is a common chromosomal defect in myeloid malignancies,particularly in chronic myelomonocytic leukemia (CMML; 48%) and MDS/MPD-unclassifiable (38%). Furthermore,we show that mapping minimally overlapping segmental UPD regions can help target the search for both known and unknown pathogenic mutations,including newly identified missense mutations in the proto-oncogene c-Cbl in 7 of 12 patients with UPD11q. Acquired mutations of c-Cbl E3 ubiquitin ligase may explain the pathogenesis of a clonal process in a subset of MDS/MPD,including CMML.
View Publication
文献
Azevedo RI et al. (MAR 2009)
Blood 113 13 2999--3007
IL-7 sustains CD31 expression in human naive CD4+ T cells and preferentially expands the CD31+ subset in a PI3K-dependent manner.
The CD31(+) subset of human naive CD4(+) T cells is thought to contain the population of cells that have recently emigrated from the thymus,while their CD31(-) counterparts have been proposed to originate from CD31(+) cells after homeostatic cell division. Naive T-cell maintenance is known to involve homeostatic cytokines such as interleukin-7 (IL-7). It remains to be investigated what role this cytokine has in the homeostasis of naive CD4(+) T-cell subsets defined by CD31 expression. We provide evidence that IL-7 exerts a preferential proliferative effect on CD31(+) naive CD4(+) T cells from adult peripheral blood compared with the CD31(-) subset. IL-7-driven proliferation did not result in loss of CD31 expression,suggesting that CD31(+) naive CD4(+) T cells can undergo cytokine-driven homeostatic proliferation while preserving CD31. Furthermore,IL-7 sustained or increased CD31 expression even in nonproliferating cells. Both proliferation and CD31 maintenance were dependent on the activation of phosphoinositide 3-kinase (PI3K) signaling. Taken together,our data suggest that during adulthood CD31(+) naive CD4(+) T cells are maintained by IL-7 and that IL-7-based therapies may exert a preferential effect on this population.
View Publication
文献
Anderson AE et al. (FEB 2009)
Journal of leukocyte biology 85 2 243--50
LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells.
Autoimmune pathologies are caused by a breakdown in self-tolerance. Tolerogenic dendritic cells (tolDC) are a promising immunotherapeutic tool for restoring self-tolerance in an antigen-specific manner. Studies about tolDC have focused largely on generating stable maturation-resistant DC,but few have fully addressed questions about the antigen-presenting and migratory capacities of these cells,prerequisites for successful immunotherapy. Here,we investigated whether human tolDC,generated with dexamethasone and the active form of vitamin D3,maintained their tolerogenic function upon activation with LPS (LPS-tolDC),while acquiring the ability to present exogenous autoantigen and to migrate in response to the CCR7 ligand CCL19. LPS activation led to important changes in the tolDC phenotype and function. LPS-tolDC,but not tolDC,expressed the chemokine receptor CCR7 and migrated in response to CCL19. Furthermore,LPS-tolDC were superior to tolDC in their ability to present type II collagen,a candidate autoantigen in rheumatoid arthritis. tolDC and LPS-tolDC had low stimulatory capacity for allogeneic,naïve T cells and skewed T cell polarization toward an anti-inflammatory phenotype,although LPS-tolDC induced significantly higher levels of IL-10 production by T cells. Our finding that LPS activation is essential for inducing migratory and antigen-presenting activity in tolDC is important for optimizing their therapeutic potential.
View Publication
文献
Snyder CM et al. (OCT 2008)
Immunity 29 4 650--9
Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells.
During persistent murine cytomegalovirus (MCMV) infection,the T cell response is maintained at extremely high intensity for the life of the host. These cells closely resemble human CMV-specific cells,which compose a major component of the peripheral T cell compartment in most people. Despite a phenotype that suggests extensive antigen-driven differentiation,MCMV-specific T cells remain functional and respond vigorously to viral challenge. We hypothesized that a low rate of antigen-driven proliferation would account for the maintenance of this population. Instead,we found that most of these cells divided only sporadically in chronically infected hosts and had a short half-life in circulation. The overall population was supported,at least in part,by memory T cells primed early in infection,as well as by recruitment of naive T cells at late times. Thus,these data show that memory inflation is maintained by a continuous replacement of short-lived,functional cells during chronic MCMV infection.
View Publication
文献
Pende D et al. (MAR 2009)
Blood 113 13 3119--29
Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity.
We analyzed 21 children with leukemia receiving haploidentical hematopoietic stem cell transplantation (haplo-HSCT) from killer immunoglobulin (Ig)-like receptors (KIR) ligand-mismatched donors. We showed that,in most transplantation patients,variable proportions of donor-derived alloreactive natural killer (NK) cells displaying anti-leukemia activity were generated and maintained even late after transplantation. This was assessed through analysis of donor KIR genotype,as well as through phenotypic and functional analyses of NK cells,both at the polyclonal and clonal level. Donor-derived KIR2DL1(+) NK cells isolated from the recipient displayed the expected capability of selectively killing C1/C1 target cells,including patient leukemia blasts. Differently,KIR2DL2/3(+) NK cells displayed poor alloreactivity against leukemia cells carrying human leukocyte antigen (HLA) alleles belonging to C2 group. Unexpectedly,this was due to recognition of C2 by KIR2DL2/3,as revealed by receptor blocking experiments and by binding assays of soluble KIR to HLA-C transfectants. Remarkably,however,C2/C2 leukemia blasts were killed by KIR2DL2/3(+) (or by NKG2A(+)) NK cells that coexpressed KIR2DS1. This could be explained by the ability of KIR2DS1 to directly recognize C2 on leukemia cells. A role of the KIR2DS2 activating receptor in leukemia cell lysis could not be demonstrated. Altogether,these results may have important clinical implications for the selection of optimal donors for haplo-HSCT.
View Publication
文献
Park I-K et al. (MAR 2009)
Blood 113 11 2470--7
The Axl/Gas6 pathway is required for optimal cytokine signaling during human natural killer cell development.
Interleukin-15 (IL-15) is essential for natural killer (NK) cell differentiation. In this study,we assessed whether the receptor tyrosine kinase Axl and its ligand,Gas6,are involved in IL-15-mediated human NK differentiation from CD34(+) hematopoietic progenitor cells (HPCs). Blocking the Axl-Gas6 interaction with a soluble Axl fusion protein (Axl-Fc) or the vitamin K inhibitor warfarin significantly diminished the absolute number and percentage of CD3(-)CD56(+) NK cells derived from human CD34(+) HPCs cultured in the presence of IL-15,probably resulting in part from reduced phosphorylation of STAT5. In addition,CD3(-)CD56(+) NK cells derived from culture of CD34(+) HPCs with IL-15 and Axl-Fc had a significantly diminished capacity to express interferon-gamma or its master regulator,T-BET. Culture of CD34(+) HPCs in the presence of c-Kit ligand and Axl-Fc resulted in a significant decrease in the frequency of NK precursor cells responding to IL-15,probably the result of reduced c-Kit phosphorylation. Collectively,our data suggest that the Axl/Gas6 pathway contributes to normal human NK-cell development,at least in part via its regulatory effects on both the IL-15 and c-Kit signaling pathways in CD34(+) HPCs,and to functional NK-cell maturation via an effect on the master regulatory transcription factor T-BET.
View Publication
文献
Peterson ME and Long EO (OCT 2008)
Immunity 29 4 578--88
Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk.
Many cellular responses,such as autoimmunity and cytotoxicity,are controlled by receptors with cytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs). Here,we showed that binding of inhibitory natural killer (NK) cell receptors to human leukocyte antigen (HLA) class I on target cells induced tyrosine phosphorylation of the adaptor Crk,concomitant with dephosphorylation of the guanine exchange factor Vav1. Furthermore,Crk dissociated from the guanine exchange factor C3G and bound to the tyrosine kinase c-Abl during inhibition. Membrane targeting of a tyrosine-mutated form of Crk could overcome inhibition of NK cell cytotoxicity,providing functional evidence that Crk phosphorylation contributes to inhibition. The specific phosphorylation of Crk and its dissociation from a signaling complex,observed here with two types of inhibitory receptors,expands the signaling potential of the large ITIM-receptor family and reveals an unsuspected component of the inhibitory mechanism.
View Publication
文献
Simons BC et al. (OCT 2008)
Journal of immunology (Baltimore,Md. : 1950) 181 7 5137--46
Despite biased TRBV gene usage against a dominant HLA B57-restricted epitope, TCR diversity can provide recognition of circulating epitope variants.
The role of epitope-specific TCR repertoire diversity in the control of HIV-1 viremia is unknown. Further analysis at the clonotype level is important for understanding the structural aspects of the HIV-1 specific repertoire that directly relate to CTL function and ability to suppress viral replication. In this study,we performed in-depth analysis of T cell clonotypes directed against a dominantly recognized HLA B57-restricted epitope (KAFSPEVIPMF; KF11) and identified common usage of the TCR beta-chain TRBV7 in eight of nine HLA B57 subjects examined,regardless of HLA B57 subtype. Despite this convergent TCR gene usage,structural and functional assays demonstrated no substantial difference in functional or structural avidity between TRBV7 and non-TRBV7 clonotypes and this epitopic peptide. In a subject where TRBV7-usage did not confer cross-reactivity against the dominant autologous sequence variant,another circulating TCR clonotype was able to preferentially recognize the variant peptide. These data demonstrate that despite selective recruitment of TCR for a conserved epitope over the course of chronic HIV-1 infection,TCR repertoire diversity may benefit the host through the ability to recognize circulating epitope variants.
View Publication
文献
Ammirati E et al. (DEC 2008)
Arteriosclerosis,thrombosis,and vascular biology 28 12 2305--11
Expansion of T-cell receptor zeta dim effector T cells in acute coronary syndromes.
OBJECTIVE: The T-cell receptor zeta (TCR zeta)-chain is a master sensor and regulator of lymphocyte responses. Loss of TCR zeta-chain expression has been documented during infectious and inflammatory diseases and defines a population of effector T cells (TCR zeta(dim) T cells) that migrate to inflamed tissues. We assessed the expression and functional correlates of circulating TCR zeta(dim) T cells in coronary artery disease. METHODS AND RESULTS: We examined the expression of TCR zeta-chain by flow cytometry in 140 subjects. Increased peripheral blood CD4(+) TCR zeta(dim) T cells were found in patients with acute coronary syndromes (ACS,n=66; median 5.3%,interquartile 2.6 to 9.1% of total CD4(+) T cells; Ptextless0.0001) compared to chronic stable angina (CSA,n=32; 1.6%; 1.0 to 4.1%) and controls (n=42; 1.5%; 0.5 to 2.9%). Such increase was significantly greater in ACS patients with elevated levels of C-reactive protein,and it persisted after the acute event. Moreover,TCR zeta(dim) cells were also more represented within CD8(+) T cell,NK,and CD4(+)CD28(null) T cell subsets in ACS compared to CSA and controls. Finally,CD4(+) and CD8(+) TCR zeta(dim) T cells isolated from ACS displayed an enhanced transendothelial migratory capacity. CONCLUSIONS: TCR zeta(dim) T cells,an effector T-cell subset with transendothelial migratory ability,are increased in ACS,and may be implicated in coronary instability.
View Publication
文献
Trotta R et al. (SEP 2008)
Journal of immunology (Baltimore,Md. : 1950) 181 6 3784--92
TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells.
TGF-beta can be a potent suppressor of lymphocyte effector cell functions and can mediate these effects via distinct molecular pathways. The role of TGF-beta in regulating CD16-mediated NK cell IFN-gamma production and antibody-dependent cellular cytotoxicity (ADCC) is unclear,as are the signaling pathways that may be utilized. Treatment of primary human NK cells with TGF-beta inhibited IFN-gamma production induced by CD16 activation with or without IL-12 or IL-2,and it did so without affecting the phosphorylation/activation of MAP kinases ERK and p38,as well as STAT4. TGF-beta treatment induced SMAD3 phosphorylation,and ectopic overexpression of SMAD3 resulted in a significant decrease in IFN-gamma gene expression following CD16 activation with or without IL-12 or IL-2. Likewise,NK cells obtained from smad3(-/-) mice produced more IFN-gamma in response to CD16 activation plus IL-12 when compared with NK cells obtained from wild-type mice. Coactivation of human NK cells via CD16 and IL-12 induced expression of T-BET,the positive regulator of IFN-gamma,and T-BET was suppressed by TGF-beta and by SMAD3 overexpression. An extended treatment of primary NK cells with TGF-beta was required to inhibit ADCC,and it did so by inhibiting granzyme A and granzyme B expression. This effect was accentuated in cells overexpressing SMAD3. Collectively,our results indicate that TGF-beta inhibits CD16-mediated human NK cell IFN-gamma production and ADCC,and these effects are mediated via SMAD3.
View Publication
文献
Wu X et al. (DEC 2008)
Blood 112 12 4675--82
Alternative splicing regulates activation-induced cytidine deaminase (AID): implications for suppression of AID mutagenic activity in normal and malignant B cells.
The mutagenic enzyme activation-induced cytidine deaminase (AID) is required for immunoglobulin class switch recombination (CSR) and somatic hypermutation (SHM) in germinal center (GC) B cells. Deregulated expression of AID is associated with various B-cell malignancies and,currently,it remains unclear how AID activity is extinguished to avoid illegitimate mutations. AID has also been shown to be alternatively spliced in malignant B cells,and there is limited evidence that this also occurs in normal blood B cells. The functional significance of these splice variants remains unknown. Here we show that normal GC human B cells and blood memory B cells similarly express AID splice variants and show for the first time that AID splicing variants are singly expressed in individual normal B cells as well as malignant B cells from chronic lymphocytic leukemia patients. We further demonstrate that the alternative AID splice variants display different activities ranging from inactivation of CSR to inactivation or heightened SHM activity. Our data therefore suggest that CSR and SHM are differentially switched off by varying the expression of splicing products of AID at the individual cell level. Most importantly,our findings suggest a novel tumor suppression mechanism by which unnecessary AID mutagenic activities are promptly contained for GC B cells.
View Publication