Schitine C et al. (JUN 2012)
The European journal of neuroscience 35 11 1672--83
Ampakine CX546 increases proliferation and neuronal differentiation in subventricular zone stem/progenitor cell cultures.
Ampakines are chemical compounds known to modulate the properties of ionotropic α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)-subtype glutamate receptors. The functional effects attributed to ampakines involve plasticity and the increase in synaptic efficiency of neuronal circuits,a process that may be intimately associated with differentiation of newborn neurons. The subventricular zone (SVZ) is the main neurogenic niche of the brain,containing neural stem cells with brain repair potential. Accordingly,the identification of new pharmaceutical compounds with neurogenesis-enhancing properties is important as a tool to promote neuronal replacement based on the use of SVZ cells. The purpose of the present paper is to examine the possible proneurogenic effects of ampakine CX546 in cell cultures derived from the SVZ of early postnatal mice. We observed that CX546 (50 μm) treatment triggered an increase in proliferation,evaluated by BrdU incorporation assay,in the neuroblast lineage. Moreover,by using a cell viability assay (TUNEL) we found that,in contrast to AMPA,CX546 did not cause cell death. Also,both AMPA and CX546 stimulated neuronal differentiation as evaluated morphologically through neuronal nuclear protein (NeuN) immunocytochemistry and functionally by single-cell calcium imaging. Accordingly,short exposure to CX546 increased axonogenesis,as determined by the number and length of tau-positive axons co-labelled for the phosphorylated form of SAPK/JNK (P-JNK),and dendritogenesis (MAP2-positive neurites). Altogether,this study shows that ampakine CX546 promotes neurogenesis in SVZ cell cultures and thereby may have potential for future stem cell-based therapies.
View Publication
文献
Pei Y et al. (MAY 2012)
Development (Cambridge,England) 139 10 1724--33
WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum.
The WNT pathway plays multiple roles in neural development and is crucial for establishment of the embryonic cerebellum. In addition,WNT pathway mutations are associated with medulloblastoma,the most common malignant brain tumor in children. However,the cell types within the cerebellum that are responsive to WNT signaling remain unknown. Here we investigate the effects of canonical WNT signaling on two important classes of progenitors in the developing cerebellum: multipotent neural stem cells (NSCs) and granule neuron precursors (GNPs). We show that WNT pathway activation in vitro promotes proliferation of NSCs but not GNPs. Moreover,mice that express activated β-catenin in the cerebellar ventricular zone exhibit increased proliferation of NSCs in that region,whereas expression of the same protein in GNPs impairs proliferation. Although β-catenin-expressing NSCs proliferate they do not undergo prolonged expansion or neoplastic growth; rather,WNT signaling markedly interferes with their capacity for self-renewal and differentiation. At a molecular level,mutant NSCs exhibit increased expression of c-Myc,which might account for their transient proliferation,but also express high levels of bone morphogenetic proteins and the cyclin-dependent kinase inhibitor p21,which might contribute to their altered self-renewal and differentiation. These studies suggest that the WNT pathway is a potent regulator of cerebellar stem cell growth and differentiation.
View Publication
文献
Biasini E et al. (JAN 2012)
PloS one 7 3 e33472
The toxicity of a mutant prion protein is cell-autonomous, and can be suppressed by wild-type prion protein on adjacent cells.
Insight into the normal function of PrP(C),and how it can be subverted to produce neurotoxic effects,is provided by PrP molecules carrying deletions encompassing the conserved central region. The most neurotoxic of these mutants,Δ105-125 (called ΔCR),produces a spontaneous neurodegenerative illness when expressed in transgenic mice,and this phenotype can be dose-dependently suppressed by co-expression of wild-type PrP. Whether the toxic activity of ΔCR PrP and the protective activity or wild-type PrP are cell-autonomous,or can be exerted on neighboring cells,is unknown. To investigate this question,we have utilized co-cultures of differentiated neural stem cells derived from mice expressing ΔCR or wild-type PrP. Cells from the two kinds of mice,which are marked by the presence or absence of GFP,are differentiated together to yield neurons,astrocytes,and oligodendrocytes. As a surrogate read-out of ΔCR PrP toxicity,we assayed sensitivity of the cells to the cationic antibiotic,Zeocin. In a previous study,we reported that cells expressing ΔCR PrP are hypersensitive to the toxic effects of several cationic antibiotics,an effect that is suppressed by co-expression of wild type PrP,similar to the rescue of the neurodegenerative phenotype observed in transgenic mice. Using this system,we find that while ΔCR-dependent toxicity is cell-autonomous,the rescuing activity of wild-type PrP can be exerted in trans from nearby cells. These results provide important insights into how ΔCR PrP subverts a normal physiological function of PrP(C),and the cellular mechanisms underlying the rescuing process.
View Publication
文献
Li Y et al. (MAR 2012)
The Journal of neuroscience : the official journal of the Society for Neuroscience 32 10 3529--39
Neurofibromin modulates adult hippocampal neurogenesis and behavioral effects of antidepressants.
Neurogenesis persists in the rodent dentate gyrus (DG) throughout adulthood but declines with age and stress. Neural progenitor cells (NPCs) residing in the subgranular zone of the DG are regulated by an array of growth factors and respond to the microenvironment,adjusting their proliferation level to determine the rate of neurogenesis. Here we report that genetic deletion of neurofibromin (Nf1),a tumor suppressor with RAS-GAP activity,in adult NPCs enhanced DG proliferation and increased generation of new neurons in mice. Nf1 loss-associated neurogenesis had the functional effect of enhancing behavioral responses to subchronic antidepressants and,over time,led to spontaneous antidepressive-like behaviors. Thus,our findings establish an important role for the Nf1-Ras pathway in regulating adult hippocampal neurogenesis,and demonstrate that activation of adult NPCs is sufficient to modulate depression- and anxiety-like behaviors.
View Publication
文献
Ross HH et al. (MAY 2012)
Experimental neurology 235 1 238--45
In vivo intermittent hypoxia elicits enhanced expansion and neuronal differentiation in cultured neural progenitors.
In vitro exposure of neural progenitor cell (NPC) populations to reduced O(2) (e.g. 3% versus 20%) can increase their proliferation,survival and neuronal differentiation. Our objective was to determine if an acute (textless1hr),in vivo exposure to intermittent hypoxia (AIH) alters expansion and/or differentiation of subsequent in vitro cultures of NPC from the subventricular zone (SVZ). Neonatal C57BL/6 mice (postnatal day 4) were exposed to an AIH paradigm (20×1 minute; alternating 21% and 10% O(2)). Immediately after AIH,SVZ tissue was isolated and NPC populations were cultured and assayed either as neurospheres (NS) or as adherent monolayer cells (MASC). AIH markedly increased the capacity for expansion of cultured NS and MASC,and this was accompanied by increases in a proliferation maker (Ki67),MTT activity and hypoxia-inducible factor-1α (HIF-1α) signaling in NS cultures. Peptide blockade experiments confirmed that proteins downstream of HIF-1α are important for both proliferation and morphological changes associated with terminal differentiation in NS cultures. Finally,immunocytochemistry and Western blotting experiments demonstrated that AIH increased expression of the neuronal fate determination transcription factor Pax6 in SVZ tissue,and this was associated with increased neuronal differentiation in cultured NS and MASC. We conclude that in vivo AIH exposure can enhance the viability of subsequent in vitro SVZ-derived NPC cultures. AIH protocols may therefore provide a means to prime" NPC prior to transplantation into the injured central nervous system."
View Publication
文献
Blackmore DG et al. (JAN 2012)
Scientific reports 2 250
Growth hormone responsive neural precursor cells reside within the adult mammalian brain.
The detection of growth hormone (GH) and its receptor in germinal regions of the mammalian brain prompted our investigation of GH and its role in the regulation of endogenous neural precursor cell activity. Here we report that the addition of exogenous GH significantly increased the expansion rate in long-term neurosphere cultures derived from wild-type mice,while neurospheres derived from GH null mice exhibited a reduced expansion rate. We also detected a doubling in the frequency of large (i.e. stem cell-derived) colonies for up to 120 days following a 7-day intracerebroventricular infusion of GH suggesting the activation of endogenous stem cells. Moreover,gamma irradiation induced the ablation of normally quiescent stem cells in GH-infused mice,resulting in a decline in olfactory bulb neurogenesis. These results suggest that GH activates populations of resident stem and progenitor cells,and therefore may represent a novel therapeutic target for age-related neurodegeneration and associated cognitive decline.
View Publication
文献
Lee Y et al. (MAR 2012)
The EMBO journal 31 5 1177--89
ATR maintains select progenitors during nervous system development.
The ATR (ATM (ataxia telangiectasia mutated) and rad3-related) checkpoint kinase is considered critical for signalling DNA replication stress and its dysfunction can lead to the neurodevelopmental disorder,ATR-Seckel syndrome. To understand how ATR functions during neurogenesis,we conditionally deleted Atr broadly throughout the murine nervous system,or in a restricted manner in the dorsal telencephalon. Unexpectedly,in both scenarios,Atr loss impacted neurogenesis relatively late during neural development involving only certain progenitor populations. Whereas the Atr-deficient embryonic cerebellar external germinal layer underwent p53- (and p16(Ink4a/Arf))-independent proliferation arrest,other brain regions suffered apoptosis that was partially p53 dependent. In contrast to other organs,in the nervous system,p53 loss did not worsen the outcome of Atr inactivation. Coincident inactivation of Atm also did not affect the phenotype after Atr deletion,supporting non-overlapping physiological roles for these related DNA damage-response kinases in the brain. Rather than an essential general role in preventing replication stress,our data indicate that ATR functions to monitor genomic integrity in a selective spatiotemporal manner during neurogenesis.
View Publication
文献
Mazur-Kolecka B et al. (MAY 2012)
Journal of neuroscience research 90 5 999--1010
Effect of DYRK1A activity inhibition on development of neuronal progenitors isolated from Ts65Dn mice.
Overexpression of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A),encoded by a gene located in the Down syndrome (DS) critical region,is considered a major contributor to developmental abnormalities in DS. DYRK1A regulates numerous genes involved in neuronal commitment,differentiation,maturation,and apoptosis. Because alterations of neurogenesis could lead to impaired brain development and mental retardation in individuals with DS,pharmacological normalization of DYRK1A activity has been postulated as DS therapy. We tested the effect of harmine,a specific DYRK1A inhibitor,on the development of neuronal progenitor cells (NPCs) isolated from the periventricular zone of newborn mice with segmental trisomy 16 (Ts65Dn mice),a mouse model for DS that overexpresses Dyrk1A by 1.5-fold. Trisomy did not affect the ability of NPCs to expand in culture. Twenty-four hours after stimulation of migration and neuronal differentiation,NPCs showed increased expression of Dyrk1A,particularly in the trisomic cultures. After 7 days,NPCs developed into a heterogeneous population of differentiating neurons and astrocytes that expressed Dyrk1A in the nuclei. In comparison with disomic cells,NPCs with trisomy showed premature neuronal differentiation and enhanced γ-aminobutyric acid (GABA)-ergic differentiation,but astrocyte development was unchanged. Harmine prevented premature neuronal maturation of trisomic NPCs but not acceleration of GABA-ergic development. In control NPCs,harmine treatment caused altered neuronal development of NPCs,similar to that in trisomic NPCs with Dyrk1A overexpression. This study suggests that pharmacological normalization of DYRK1A activity may have a potential role in DS therapy.
View Publication
文献
Hirai S et al. (MAR 2012)
The EMBO journal 31 5 1190--202
RP58 controls neuron and astrocyte differentiation by downregulating the expression of Id1-4 genes in the developing cortex.
Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure,Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here,we report that a transcriptional factor,RP58,negatively regulates all four Id genes (Id1-Id4) in developing cerebral cortex. Consistently,Rp58 knockout (KO) mice demonstrated enhanced astrogenesis accompanied with an excess of NSCs. These phenotypes were mimicked by the overexpression of all Id genes in wild-type cortical progenitors. Furthermore,Rp58 KO phenotypes were rescued by the knockdown of all Id genes in mutant cortical progenitors but not by the knockdown of each single Id gene. Finally,we determined p57 as an effector gene of RP58-Id-mediated cell fate control. These findings establish RP58 as a novel key regulator that controls the self-renewal and differentiation of NSCs and restriction of astrogenesis by repressing all Id genes during corticogenesis.
View Publication
文献
Poornima V et al. (MAR 2012)
Journal of molecular neuroscience : MN 46 3 585--94
P2X7 receptor-pannexin 1 hemichannel association: effect of extracellular calcium on membrane permeabilization.
Activation of P2X(7) receptor (P2X(7)R) and pannexin have been implicated in membrane permeabilization associated with ischemic cell death and many other inflammatory processes. P2X(7)R has a unique property of forming large pore upon repeated or prolonged application of agonist like ATP or 2',3'-(4-benzoyl) benzoyl ATP. It has been proposed that pannexin 1 (panx1) hemichannel associates with P2X(7)R to form large pore,though the actual mechanism is not yet understood. Calcium concentration in extracellular milieu drops in many patho-physiological conditions,e.g. ischemia,when P2X(7)R/pannexin is also known to be activated. Therefore,we hypothesize that extracellular calcium ([Ca(2+)](o)) plays an important role in the coupling of P2X(7)R-panx1 and subsequent membrane permeabilization. In this study we show that membrane permeability of the P2X(7)R and panx1 expressing N2A cell increases in ([Ca(2+)](o))-free solution. In [Ca(2+)](o)-free solution,fluorescent dye calcein trapped cells exhibited time-dependent dye leakage resulting in about 50% decrease of fluorescence intensity in 30 min. Control cells in 2 mM [Ca(2+)](o) did not show such leakage. Like N2A cells,mixed culture of neuron and glia,derived from hippocampal progenitor cells showed similar dye leakage. Dye leakage was blocked either by pannexin-specific blocker,carbenoxolone or P2X(7)R antagonists,Brilliant Blue G,and oxidized ATP. Furthermore P2X(7)R and panx1 were co-immunoprecipitated. The amount of P2X(7)R protein pulled-down with panx1,increased by twofold when cells were incubated 30 min in [Ca(2+)](o)-free buffer. Taken together,the results of this study demonstrate the activation and association of P2X(7)R-panx1,triggered by the removal of [Ca(2+)](o).
View Publication
文献
Arscott WT et al. (SEP 2011)
Brain research 1413 1--8
Interferon β-1b directly modulates human neural stem/progenitor cell fate.
Interferon beta (IFN-β) is a mainline treatment for multiple sclerosis (MS); however its exact mechanism of action is not completely understood. IFN-β is known as an immunomodulator; although recent evidence suggests that IFN-β may also act directly on neural stem/progenitor cells (NPCs) in the central nervous system (CNS). NPCs can differentiate into all neural lineage cells,which could contribute to the remyelination and repair of MS lesions. Understanding how IFN-β influences NPC physiology is critical to develop more specific therapies that can better assist this repair process. In this study,we investigated the effects of IFN β-1b (Betaseron®) on human NPCs in vitro (hNPCs). Our data demonstrate a dose-dependent response of hNPCs to IFN β-1b treatment via sustained proliferation and differentiation. Furthermore,we offer insight into the signaling pathways involved in these mechanisms. Overall,this study shows a direct effect of IFN β-1b on hNPCs and highlights the need to further understand how current MS treatments can modulate endogenous NPC populations within the CNS.
View Publication
文献
Spiller SE et al. (DEC 2011)
BMC Cancer 11 1 136
Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo
BACKGROUND Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery,whole brain and spine irradiation,and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. METHODS To test the importance of NFκB to medulloblastoma cell growth,the effects of multiple drugs that inhibit NFκB,pyrrolidine dithiocarbamate,diethyldithiocarbamate,sulfasalazine,curcumin and bortezomib,were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells,xenograft flank tumors,and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB,IκB,was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. RESULTS We report high constitutive activity of the canonical NFκB pathway,as seen by Western analysis of the NFκB subunit p65,in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though,conversely,the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally,expression of a dominant negative form of the endogenous inhibitor of NFκB,dnIκB,resulted in poor xenograft tumor growth,with average tumor volumes 40% smaller than controls. CONCLUSIONS These data collectively demonstrate that NFκB signaling is important for medulloblastoma tumor growth,and that inhibition can reduce tumor size and viability in vivo. We discuss the implications of NFκB signaling on the approach to managing patients with medulloblastoma in order to improve clinical outcomes.
View Publication