Gao N et al. ( 2006)
Molecular pharmacology 70 2 645--655
The three-substituted indolinone cyclin-dependent kinase 2 inhibitor 3-[1-(3H-imidazol-4-yl)-meth-(Z)-ylidene]-5-methoxy-1,3-dihydro-indol-2-one (SU9516) kills human leukemia cells via down-regulation of Mcl-1 through a transcriptional mechanism.
Mechanisms of lethality of the three-substituted indolinone and putatively selective cyclin-dependent kinase (CDK)2 inhibitor 3-[1-(3H-imidazol-4-yl)-meth-(Z)-ylidene]-5-methoxy-1,3-dihydro-indol-2-one (SU9516) were examined in human leukemia cells. Exposure of U937 and other leukemia cells to SU9516 concentrations textgreater or =5 microM rapidly (i.e.,within 4 h) induced cytochrome c release,Bax mitochondrial translocation,and apoptosis in association with pronounced down-regulation of the antiapoptotic protein Mcl-1. These effects were associated with inhibition of phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase (Pol) II on serine 2 but not serine 5. Reverse transcription-polymerase chain reaction analysis revealed pronounced down-regulation of Mcl-1 mRNA levels in SU9516-treated cells. Similar results were obtained in Jurkat and HL-60 leukemia cells. Furthermore,cotreatment with the proteasome inhibitor N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) blocked SU9516-mediated Mcl-1 down-regulation,implicating proteasomal degradation in diminished expression of this protein. Ectopic expression of Mcl-1 largely blocked SU9516-induced cytochrome c release,Bax translocation,and apoptosis,whereas knockdown of Mcl-1 by small interfering RNA potentiated SU9516 lethality,confirming the functional contribution of Mcl-1 down-regulation to SU9516-induced cell death. It is noteworthy that SU9516 treatment resulted in a marked increase in reactive oxygen species production,which was diminished,along with cell death,by the free radical scavenger N-acetylcysteine (NAC). We were surprised to find that NAC blocked SU9516-mediated inhibition of RNA Pol II CTD phosphorylation on serine 2,reductions in Mcl-1 mRNA levels,and Mcl-1 down-regulation. Together,these findings suggest that SU9516 kills leukemic cells through inhibition of RNA Pol II CTD phosphorylation in association with oxidative damage and down-regulation of Mcl-1 at the transcriptional level,culminating in mitochondrial injury and cell death.
View Publication
文献
Wunderlich M et al. (SEP 2006)
Blood 108 5 1690--7
Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability.
The t(16:16) and inv(16) are associated with FAB M4Eo myeloid leukemias and result in fusion of the CBFB gene to the MYH11 gene (encoding smooth muscle myosin heavy chain [SMMHC]). Knockout of CBFbeta causes embryonic lethality due to lack of definitive hematopoiesis. Although knock-in of CBFB-MYH11 is not sufficient to cause disease,expression increases the incidence of leukemia when combined with cooperating events. Although mouse models are valuable tools in the study of leukemogenesis,little is known about the contribution of CBFbeta-SMMHC to human hematopoietic stem and progenitor cell self-renewal. We introduced the CBFbeta-MYH11 cDNA into human CD34+ cells via retroviral transduction. Transduced cells displayed an initial repression of progenitor activity but eventually dominated the culture,resulting in the proliferation of clonal populations for up to 7 months. Long-term cultures displayed a myelomonocytic morphology while retaining multilineage progenitor activity and engraftment in NOD/SCID-B2M-/- mice. Progenitor cells from long-term cultures showed altered expression of genes defining inv(16) identified in microarray studies of human patient samples. This system will be useful in examining the effects of CBFbeta-SMMHC on gene expression in the human preleukemic cell,in characterizing the effect of this oncogene on human stem cell biology,and in defining its contribution to the development of leukemia.
View Publication
文献
Lacout C et al. (SEP 2006)
Blood 108 5 1652--60
JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis.
A JAK2(V617F) mutation is frequently found in several BCR/ABL-negative myeloproliferative disorders. To address the contribution of this mutant to the pathogenesis of these different myeloproliferative disorders,we used an adoptive transfer of marrow cells transduced with a retrovirus expressing JAK2(V617F) in recipient irradiated mice. Hosts were analyzed during the 6 months after transplantation. For a period of 3 months,mice developed polycythemia,macrocytosis and usually peripheral blood granulocytosis. Transient thrombocytosis was only observed in a low-expresser group. All mice displayed trilineage hyperplasia in marrow and spleen along with an amplification of myeloid and erythroid progenitor cells and a formation of endogenous erythroid colonies. After 3 to 4 months,polycythemia regressed,abnormally shaped red blood cells and platelets were seen in circulation,and a deposition of reticulin fibers was observed in marrow and spleen. Development of fibrosis was associated with anemia,thrombocytopenia,high neutrophilia,and massive splenomegaly. These features mimic human polycythemia vera and its evolution toward myelofibrosis. This work demonstrates that JAK2(V617F) is sufficient for polycythemia and fibrosis development and offers an in vivo model to assess novel therapeutic approaches for JAK2(V617F)-positive pathologies. Questions remain regarding the exact contribution of JAK2(V617F) in other myeloproliferative disorders.
View Publication
文献
Ferrari-Amorotti G et al. (AUG 2006)
Blood 108 4 1353--62
Leukemogenesis induced by wild-type and STI571-resistant BCR/ABL is potently suppressed by C/EBPalpha.
Chronic phase-to-blast crisis transition in chronic myelogenous leukemia (CML) is associated with differentiation arrest and down-regulation of C/EBPalpha,a transcription factor essential for granulocyte differentiation. Patients with CML in blast crisis (CML-BC) became rapidly resistant to therapy with the breakpoint cluster region-Abelson murine leukemia (BCR/ABL) kinase inhibitor imatinib (STI571) because of mutations in the kinase domain that interfere with drug binding. We show here that the restoration of C/EBPalpha activity in STI571-sensitive or -resistant 32D-BCR/ABL cells induced granulocyte differentiation,inhibited proliferation in vitro and in mice,and suppressed leukemogenesis. Moreover,activation of C/EBPalpha eradicated leukemia in 4 of 10 and in 6 of 7 mice injected with STI571-sensitive or -resistant 32D-BCR/ABL cells,respectively. Differentiation induction and proliferation inhibition were required for optimal suppression of leukemogenesis,as indicated by the effects of p42 C/EBPalpha,which were more potent than those of K298E C/EBPalpha,a mutant defective in DNA binding and transcription activation that failed to induce granulocyte differentiation. Activation of C/EBPalpha in blast cells from 4 patients with CML-BC,including one resistant to STI571 and BMS-354825 and carrying the T315I Abl kinase domain mutation,also induced granulocyte differentiation. Thus,these data indicate that C/EBPalpha has potent antileukemia effects even in cells resistant to ATP-binding competitive tyrosine kinase inhibitors,and they portend the development of anti-leukemia therapies that rely on C/EBPalpha activation.
View Publication
文献
Wendel H-G et al. (MAY 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 19 7444--9
Loss of p53 impedes the antileukemic response to BCR-ABL inhibition.
Targeted cancer therapies exploit the continued dependence of cancer cells on oncogenic mutations. Such agents can have remarkable activity against some cancers,although antitumor responses are often heterogeneous,and resistance remains a clinical problem. To gain insight into factors that influence the action of a prototypical targeted drug,we studied the action of imatinib (STI-571,Gleevec) against murine cells and leukemias expressing BCR-ABL,an imatinib target and the initiating oncogene for human chronic myelogenous leukemia (CML). We show that the tumor suppressor p53 is selectively activated by imatinib in BCR-ABL-expressing cells as a result of BCR-ABL kinase inhibition. Inactivation of p53,which can accompany disease progression in human CML,impedes the response to imatinib in vitro and in vivo without preventing BCR-ABL kinase inhibition. Concordantly,p53 mutations are associated with progression to imatinib resistance in some human CMLs. Our results identify p53 as a determinant of the response to oncogene inhibition and suggest one way in which resistance to targeted therapy can emerge during the course of tumor evolution.
View Publication
文献
Maes C et al. (MAY 2006)
The Journal of clinical investigation 116 5 1230--42
Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair.
Current therapies for delayed- or nonunion bone fractures are still largely ineffective. Previous studies indicated that the VEGF homolog placental growth factor (PlGF) has a more significant role in disease than in health. Therefore we investigated the role of PlGF in a model of semi-stabilized bone fracture healing. Fracture repair in mice lacking PlGF was impaired and characterized by a massive accumulation of cartilage in the callus,reminiscent of delayed- or nonunion fractures. PlGF was required for the early recruitment of inflammatory cells and the vascularization of the fracture wound. Interestingly,however,PlGF also played a role in the subsequent stages of the repair process. Indeed in vivo and in vitro findings indicated that PlGF induced the proliferation and osteogenic differentiation of mesenchymal progenitors and stimulated cartilage turnover by particular MMPs. Later in the process,PlGF was required for the remodeling of the newly formed bone by stimulating osteoclast differentiation. As PlGF expression was increased throughout the process of bone repair and all the important cell types involved expressed its receptor VEGFR-1,the present data suggest that PlGF is required for mediating and coordinating the key aspects of fracture repair. Therefore PlGF may potentially offer therapeutic advantages for fracture repair.
View Publication
文献
Jamieson CHM et al. (APR 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 16 6224--9
The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation.
Although a large proportion of patients with polycythemia vera (PV) harbor a valine-to-phenylalanine mutation at amino acid 617 (V617F) in the JAK2 signaling molecule,the stage of hematopoiesis at which the mutation arises is unknown. Here we isolated and characterized hematopoietic stem cells (HSC) and myeloid progenitors from 16 PV patient samples and 14 normal individuals,testing whether the JAK2 mutation could be found at the level of stem or progenitor cells and whether the JAK2 V617F-positive cells had altered differentiation potential. In all PV samples analyzed,there were increased numbers of cells with a HSC phenotype (CD34+CD38-CD90+Lin-) compared with normal samples. Hematopoietic progenitor assays demonstrated that the differentiation potential of PV was already skewed toward the erythroid lineage at the HSC level. The JAK2 V617F mutation was detectable within HSC and their progeny in PV. Moreover,the aberrant erythroid potential of PV HSC was potently inhibited with a JAK2 inhibitor,AG490.
View Publication
文献
Coleman TR et al. (APR 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 15 5965--70
Cytoprotective doses of erythropoietin or carbamylated erythropoietin have markedly different procoagulant and vasoactive activities.
Recombinant human erythropoietin (rhEPO) is receiving increasing attention as a potential therapy for prevention of injury and restoration of function in nonhematopoietic tissues. However,the minimum effective dose required to mimic and augment these normal paracrine functions of erythropoietin (EPO) in some organs (e.g.,the brain) is higher than for treatment of anemia. Notably,a dose-dependent risk of adverse effects has been associated with rhEPO administration,especially in high-risk groups,including polycythemia-hyperviscosity syndrome,hypertension,and vascular thrombosis. Of note,several clinical trials employing relatively high dosages of rhEPO in oncology patients were recently halted after an increase in mortality and morbidity,primarily because of thrombotic events. We recently identified a heteromeric EPO receptor complex that mediates tissue protection and is distinct from the homodimeric receptor responsible for the support of erythropoiesis. Moreover,we developed receptor-selective ligands that provide tools to assess which receptor isoform mediates which biological consequence of rhEPO therapy. Here,we demonstrate that rhEPO administration in the rat increases systemic blood pressure,reduces regional renal blood flow,and increases platelet counts and procoagulant activities. In contrast,carbamylated rhEPO,a heteromeric receptor-specific ligand that is fully tissue protective,increases renal blood flow,promotes sodium excretion,reduces injury-induced elevation in procoagulant activity,and does not effect platelet production. These preclinical findings suggest that nonerythropoietic tissue-protective ligands,which appear to elicit fewer adverse effects,may be especially useful in clinical settings for tissue protection.
View Publication
文献
Zeng Z et al. ( 2006)
Cancer research 66 7 3737--3746
Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia.
Phosphoinositol-3-kinase (PI3K)/protein kinase B (AKT) and Fms-like tyrosine kinase 3 (FLT3) signaling are aberrantly activated in acute myelogenous leukemia (AML) cells. Constitutively activated AKT and FLT3 regulate leukemia cell survival and resistance to chemotherapy. In this study,we investigated the effects of the novel multiple kinase inhibitor KP372-1 on the survival of AML cell lines and primary AML samples. KP372-1 directly inhibited the kinase activity of AKT,PDK1,and FLT3 in a concentration-dependent manner. Western blot analysis indicated that KP372-1 decreased the phosphorylation of AKT on both Ser(473) and Thr(308); abrogated the phosphorylation of p70S6 kinase,BAD,and Foxo3a via PI3K/AKT signaling; and down-regulated expression of PIM-1 through direct inhibition of FLT3. Treatment of AML cell lines with KP372-1 resulted in rapid generation of reactive oxygen species and stimulation of oxygen consumption,followed by mitochondrial depolarization,caspase activation,and phosphatidylserine externalization. KP372-1 induced pronounced apoptosis in AML cell lines and primary samples irrespective of their FLT3 status,but not in normal CD34(+) cells. Moreover,KP372-1 markedly decreased the colony-forming ability of primary AML samples (IC(50) textless 200 nmol/L) with minimal cytotoxic effects on normal progenitor cells. Taken together,our results show that the simultaneous inhibition of critical prosurvival kinases by KP372-1 leads to mitochondrial dysfunction and apoptosis of AML but not normal hematopoietic progenitor cells.
View Publication
文献
Barbui AM et al. (APR 2006)
Experimental hematology 34 4 475--85
Clinical grade expansion of CD45RA, CD45RO, and CD62L-positive T-cell lines from HLA-compatible donors: high cytotoxic potential against AML and ALL cells.
OBJECTIVE: Identification of a clinical grade method for the ex vivo generation of donor-derived T cells cytotoxic against both myeloid and lymphoblastic cells still remains elusive. We investigated rapid generation and expansion of donor derived-allogeneic T-cell lines cytotoxic against patient leukemic cells. MATERIALS AND METHODS: Acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) blasts were cultured 5 days in Stem Span,granulocyte macrophage colony-stimulating factor,interleukin-4,and calcium ionophore. All B-precursor ALL (N22) and AML (N13),but not T-cell ALL (N3),differentiated into mature leukemia-derived antigen-presenting cells (LD-APC). All but one LD-APC generated cytotoxic T lymphocyte (CTL) from adult human leukocyte antigen (HLA)-identical (N8) or unrelated donors (N2). RESULTS: Upon in vitro culture,donor-derived CTL acquired a memory T phenotype,showing concomitant high CD45RA,CD45RO,CD62L expression. CD8(+) cells,but not CD4(+) cells,were granzyme,perforine,and interferon-gamma-positive. Pooled CD4(+) and CD8(+) cells were cytotoxic against leukemic blasts (32%,30:1 E:T ratio),but not against autologous or patient-derived phytohemagglutinin blasts. LD-APC from five ALL patients were used to generate CTL from cord blood. A mixed population of CD4(+) and CD8(+) cells was documented in 54% of wells. T cells acquired classical effector memory phenotype and showed a higher cytotoxicity against leukemia blasts (47%,1:1 E:T ratio). Adult and cord blood CTL showed a skewing from a complete T-cell receptor repertoire to an oligo-clonal/clonal pattern. CONCLUSIONS: Availability of these cells should allow clinical trials for salvage treatment of leukemia patients relapsing after allogeneic stem cell transplantation.
View Publication
文献
Chen W et al. (JUL 2006)
Blood 108 2 669--77
A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy.
The 2 most frequent human MLL hematopoietic malignancies involve either AF4 or AF9 as fusion partners; each has distinct biology but the role of the fusion partner is not clear. We produced Mll-AF4 knock-in (KI) mice by homologous recombination in embryonic stem cells and compared them with Mll-AF9 KI mice. Young Mll-AF4 mice had lymphoid and myeloid deregulation manifest by increased lymphoid and myeloid cells in hematopoietic organs. In vitro,bone marrow cells from young mice formed unique mixed pro-B lymphoid (B220(+)CD19(+)CD43(+)sIgM(-),PAX5(+),TdT(+),IgH rearranged)/myeloid (CD11b/Mac1(+),c-fms(+),lysozyme(+)) colonies when grown in IL-7- and Flt3 ligand-containing media. Mixed lymphoid/myeloid hyperplasia and hematologic malignancies (most frequently B-cell lymphomas) developed in Mll-AF4 mice after prolonged latency; long latency to malignancy indicates that Mll-AF4-induced lymphoid/myeloid deregulation alone is insufficient to produce malignancy. In contrast,young Mll-AF9 mice had predominately myeloid deregulation in vivo and in vitro and developed myeloid malignancies. The early onset of distinct mixed lymphoid/myeloid lineage deregulation in Mll-AF4 mice shows evidence for both instructive" and "noninstructive" roles for AF4 and AF9 as partners in MLL fusion genes. The molecular basis for "instruction" and secondary cooperating mutations can now be studied in our Mll-AF4 model."
View Publication
文献
Koul D et al. ( 2006)
Molecular cancer therapeutics 5 3 637--644
Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma.
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and Akt are important regulators of the phosphatidylinositol 3-kinase (PI3K) pathway and thus are important to the regulation of a wide spectrum of tumor-related biological processes. Akt regulates several critical cellular functions,including cell cycle progression; cell migration,invasion,and survival; and angiogenesis. Decreased expression of PTEN and overexpression of the Akt proto-oncogene,which is located downstream of PI3K,have been shown in a variety of cancers,including glioblastoma. Novel small-molecule inhibitors of receptors and signaling pathways,including inhibitors of the PI3K pathway,have shown antitumor activity,but inhibitors of Akt have not been examined. In this study,we tested our hypothesis that the pharmacologic inhibition of Akt has an antiproliferative effect on gliomas. We showed that two newly developed Akt inhibitors,KP-372-1 and KP-372-2 (herein called KP-1 and KP-2),effectively inhibited the PI3K/Akt signaling cascade. KP-1 and KP-2 blocked both the basal and epidermal growth factor-induced phosphorylation of Akt Ser473 at 125 and 250 nmol/L,which,in turn,reduced the activation of intracellular downstream targets of Akt,including GSK-3beta and p70s6k. Furthermore,the treatment of U87 and U251 glioma cells with 125 to 250 nmol/L KP-1 and KP2 for 48 hours inhibited cell growth by approximately 50%. This decrease in cell growth stemmed from the induction of apoptosis. Collectively,these results provide a strong rationale for the pharmacologic targeting of Akt for the treatment of gliomas.
View Publication