Jatiani SS et al. (APR 2010)
Genes & cancer 1 4 331--45
A Non-ATP-Competitive Dual Inhibitor of JAK2 and BCR-ABL Kinases: Elucidation of a Novel Therapeutic Spectrum Based on Substrate Competitive Inhibition.
Here we report the discovery of ON044580,an α-benzoyl styryl benzyl sulfide that possesses potent inhibitory activity against two unrelated kinases,JAK2 and BCR-ABL,and exhibits cytotoxicity to human tumor cells derived from chronic myelogenous leukemia (CML) and myelodysplasia (MDS) patients or cells harboring a mutant JAK2 kinase. This novel spectrum of activity is explained by the non-ATP-competitive inhibition of JAK2 and BCR-ABL kinases. ON044580 inhibits mutant JAK2 kinase and the proliferation of JAK2(V617F)-positive leukemic cells and blocks the IL-3-mediated phosphorylation of JAK2 and STAT5. Interestingly,this compound also directly inhibits the kinase activity of both wild-type and imatinib-resistant (T315I) forms of the BCR-ABL kinase. Finally,ON044580 effectively induces apoptosis of imatinib-resistant CML patient cells. The apparently unrelated JAK2 and BCR-ABL kinases share a common substrate,STAT5,and such substrate competitive inhibitors represent an alternative therapeutic strategy for development of new inhibitors. The novel mechanism of kinase inhibition exhibited by ON044580 renders it effective against mutant forms of kinases such as the BCR-ABL(T315I) and JAK2(V617F). Importantly,ON044580 selectively reduces the number of aneuploid cells in primary bone marrow samples from monosomy 7 MDS patients,suggesting another regulatory cascade amenable to this agent in these aberrant cells. Data presented suggest that this compound could have multiple therapeutic applications including monosomy 7 MDS,imatinib-resistant CML,and myeloproliferative neoplasms that develop resistance to ATP-competitive agents.
View Publication
文献
Clendening JW et al. (AUG 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 34 15051--6
Dysregulation of the mevalonate pathway promotes transformation.
The importance of cancer metabolism has been appreciated for many years,but the intricacies of how metabolic pathways interconnect with oncogenic signaling are not fully understood. With a clear understanding of how metabolism contributes to tumorigenesis,we will be better able to integrate the targeting of these fundamental biochemical pathways into patient care. The mevalonate (MVA) pathway,paced by its rate-limiting enzyme,hydroxymethylglutaryl coenzyme A reductase (HMGCR),is required for the generation of several fundamental end-products including cholesterol and isoprenoids. Despite years of extensive research from the perspective of cardiovascular disease,the contribution of a dysregulated MVA pathway to human cancer remains largely unexplored. We address this issue directly by showing that dysregulation of the MVA pathway,achieved by ectopic expression of either full-length HMGCR or its novel splice variant,promotes transformation. Ectopic HMGCR accentuates growth of transformed and nontransformed cells under anchorage-independent conditions or as xenografts in immunocompromised mice and,importantly,cooperates with RAS to drive the transformation of primary mouse embryonic fibroblasts cells. We further explore whether the MVA pathway may play a role in the etiology of human cancers and show that high mRNA levels of HMGCR and additional MVA pathway genes correlate with poor prognosis in a meta-analysis of six microarray datasets of primary breast cancer. Taken together,our results suggest that HMGCR is a candidate metabolic oncogene and provide a molecular rationale for further exploring the statin family of HMGCR inhibitors as anticancer agents.
View Publication
文献
Leong SM et al. (OCT 2010)
Blood 116 17 3286--96
Mutant nucleophosmin deregulates cell death and myeloid differentiation through excessive caspase-6 and -8 inhibition.
In up to one-third of patients with acute myeloid leukemia,a C-terminal frame-shift mutation results in abnormal and abundant cytoplasmic accumulation of the usually nucleoli-bound protein nucleophosmin (NPM),and this is thought to function in cancer pathogenesis. Here,we demonstrate a gain-of-function role for cytoplasmic NPM in the inhibition of caspase signaling. The NPM mutant specifically inhibits the activities of the cell-death proteases,caspase-6 and -8,through direct interaction with their cleaved,active forms,but not the immature procaspases. The cytoplasmic NPM mutant not only affords protection from death ligand-induced cell death but also suppresses caspase-6/-8-mediated myeloid differentiation. Our data hence provide a potential explanation for the myeloid-specific involvement of cytoplasmic NPM in the leukemogenesis of a large subset of acute myeloid leukemia.
View Publication
文献
Zhao Z et al. (JUL 2010)
Genes & development 24 13 1389--402
p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal.
The p53 tumor suppressor limits proliferation in response to cellular stress through several mechanisms. Here,we test whether the recently described ability of p53 to limit stem cell self-renewal suppresses tumorigenesis in acute myeloid leukemia (AML),an aggressive cancer in which p53 mutations are associated with drug resistance and adverse outcome. Our approach combined mosaic mouse models,Cre-lox technology,and in vivo RNAi to disable p53 and simultaneously activate endogenous Kras(G12D)-a common AML lesion that promotes proliferation but not self-renewal. We show that p53 inactivation strongly cooperates with oncogenic Kras(G12D) to induce aggressive AML,while both lesions on their own induce T-cell malignancies with long latency. This synergy is based on a pivotal role of p53 in limiting aberrant self-renewal of myeloid progenitor cells,such that loss of p53 counters the deleterious effects of oncogenic Kras on these cells and enables them to self-renew indefinitely. Consequently,myeloid progenitor cells expressing oncogenic Kras and lacking p53 become leukemia-initiating cells,resembling cancer stem cells capable of maintaining AML in vivo. Our results establish an efficient new strategy for interrogating oncogene cooperation,and provide strong evidence that the ability of p53 to limit aberrant self-renewal contributes to its tumor suppressor activity.
View Publication
文献
Agerstam H et al. (SEP 2010)
Blood 116 12 2103--11
Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice.
The 8p11 myeloproliferative syndrome (EMS),also referred to as stem cell leukemia/lymphoma,is a chronic myeloproliferative disorder that rapidly progresses into acute leukemia. Molecularly,EMS is characterized by fusion of various partner genes to the FGFR1 gene,resulting in constitutive activation of the tyrosine kinases in FGFR1. To date,no previous study has addressed the functional consequences of ectopic FGFR1 expression in the potentially most relevant cellular context,that of normal primary human hematopoietic cells. Herein,we report that expression of ZMYM2/FGFR1 (previously known as ZNF198/FGFR1) or BCR/FGFR1 in normal human CD34(+) cells from umbilical-cord blood leads to increased cellular proliferation and differentiation toward the erythroid lineage in vitro. In immunodeficient mice,expression of ZMYM2/FGFR1 or BCR/FGFR1 in human cells induces several features of human EMS,including expansion of several myeloid cell lineages and accumulation of blasts in bone marrow. Moreover,bone marrow fibrosis together with increased extramedullary hematopoiesis is observed. This study suggests that FGFR1 fusion oncogenes,by themselves,are capable of initiating an EMS-like disorder,and provides the first humanized model of a myeloproliferative disorder transforming into acute leukemia in mice. The established in vivo EMS model should provide a valuable tool for future studies of this disorder.
View Publication
文献
Pé et al. (OCT 2010)
Journal of medical genetics 47 10 686--91
Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia.
BACKGROUND: CBL missense mutations have recently been associated with juvenile myelomonocytic leukaemia (JMML),an aggressive myeloproliferative and myelodysplastic neoplasm of early childhood characterised by excessive macrophage/monocyte proliferation. CBL,an E3 ubiquitin ligase and a multi-adaptor protein,controls proliferative signalling networks by downregulating the growth factor receptor signalling cascades in various cell types. METHODS AND RESULTS: CBL mutations were screened in 65 patients with JMML. A homozygous mutation of CBL was found in leukaemic cells of 4/65 (6%) patients. In all cases,copy neutral loss of heterozygosity of the 11q23 chromosomal region,encompassing the CBL locus,was demonstrated. Three of these four patients displayed additional features suggestive of an underlying developmental condition. A heterozygous germline CBL p.Y371H substitution was found in each of them and was inherited from the father in one patient. The germline mutation represents the first hit,with somatic loss of heterozygosity being the second hit positively selected in JMML cells. The three patients display a variable combination of dysmorphic features,hyperpigmented skin lesions and microcephaly that enable a 'CBL syndrome' to be tentatively delineated. Learning difficulties and postnatal growth retardation may be part of the phenotype. CONCLUSION: A report of germline mutations of CBL in three patients with JMML is presented here,confirming the existence of an unreported inheritable condition associated with a predisposition to JMML.
View Publication
文献
Obermair F-J et al. (SEP 2010)
Stem cell research 5 2 131--43
A novel classification of quiescent and transit amplifying adult neural stem cells by surface and metabolic markers permits a defined simultaneous isolation.
Adult neural stem and progenitor cells (NSPCs) are usually defined retrospectively by their ability to proliferate in vivo (bromodeoxyuridine uptake) or to form neurospheres and to differentiate into neurons,astrocytes and oligodendrocytes in vitro. Additional strategies to identify and to isolate NSPCs are of great importance for the investigation of cell differentiation and fate specification. Using the cell surface molecules Prominin-1 and Lewis X and a metabolic marker,the aldehyde dehydrogenase activity,we isolated and characterized five main populations of NSPCs in the neurogenic subventricular zone (SVZ) and the non-neurogenic spinal cord (SC). We used clonal analysis to assess neurosphere formation and multipotency,BrdU retention to investigate in vivo proliferation activity and quantified the expression of NSPC associated genes. Surprisingly,we found many similarities in NSPC subpopulations derived from the SVZ and SC suggesting that subtypes with similar intrinsic potential exist in both regions. The marker defined classification of NSPCs will help to distinguish subpopulations of NSPCs and allows their prospective isolation using fluorescence activated cell sorting.
View Publication
文献
Dedhia PH et al. (AUG 2010)
Blood 116 8 1321--8
Differential ability of Tribbles family members to promote degradation of C/EBPalpha and induce acute myelogenous leukemia.
Trib1,Trib2,and Trib3 are mammalian homologs of Tribbles,an evolutionarily conserved Drosophila protein family that mediates protein degradation. Tribbles proteins function as adapters to recruit E3 ubiquitin ligases and enhance ubiquitylation of the target protein to promote its degradation. Increased Trib1 and Trib2 mRNA expression occurs in human myeloid leukemia and induces acute myeloid leukemia in mice,whereas Trib3 has not been associated with leukemia. Given the high degree of structural conservation among Tribbles family members,we directly compared the 3 mammalian Tribbles in hematopoietic cells by reconstituting mice with hematopoietic stem cells retrovirally expressing these proteins. All mice receiving Trib1 or Trib2 transduced hematopoietic stem cells developed acute myeloid leukemia,whereas Trib3 mice did not. Our previous data indicated that Trib2-mediated degradation of the transcription factor,CCAAT/enhancer-binding protein-alpha (C/EBPalpha),is important for leukemogenesis. Similar to Trib2,Trib1 induced C/EBPalpha degradation and inhibited its function. In contrast,Trib3 failed to inactivate or promote efficient degradation of C/EBPalpha. These data reveal that the 3 Tribbles homologs differ in their ability to promote degradation of C/EBPalpha,which account for their differential ability to induce leukemia.
View Publication
文献
Nagano M et al. (AUG 2010)
Stem cells and development 19 8 1195--210
Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair.
Mesenchymal stem cells (MSCs) are highly useful in a variety of cell therapies owing to their multipotential differentiation capability. MSCs derived from umbilical cord blood are generally isolated by their plastic adherence without using specific cell surface markers and examined for their osteogenic,adipogenic,and chondrogenic differentiation properties retrospectively. Here,we report 2 subpopulations of MSCs,separated based on aldehyde dehydrogenase (ALDH) activity. MSCs with a high ALDH activity (Alde-High) proliferated more than those with a low ALDH activity (Alde-Low). Alde-High MSCs had a greater ability to differentiate than Alde-Low MSCs in in vitro culture. Transplantation of Alde-High MSCs into fractured mouse femurs enabled early repair of tissues and rapid bone substitution. Alde-High MSCs were also more responsive to hypoxia than Alde-Low MSCs,with the upregulation of Flt-1,CXCR4,and Angiopoietin-2. Thus,MSCs with a high ALDH activity might serve as an effective therapeutic tool for healing fractures within a short period of time.
View Publication
文献
Lassailly F et al. (JUL 2010)
Blood 115 26 5347--54
Microenvironmental contaminations" induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking."
Determining how normal and leukemic stem cells behave in vivo,in a dynamic and noninvasive way,remains a major challenge. Most optical tracking technologies rely on the use of fluorescent or bioluminescent reporter genes,which need to be stably expressed in the cells of interest. Because gene transfer in primary leukemia samples represents a major risk to impair their capability to engraft in a xenogenic context,we evaluated the possibility to use gene transfer-free labeling technologies. The lipophilic dye 3,3,3',3' tetramethylindotricarbocyanine iodide (DiR) was selected among 4 near-infrared (NIR) staining technologies. Unfortunately we report here a massive transfer of the dye occurring toward the neighbor cells both in vivo and in vitro. We further demonstrate that all lipophilic dyes tested in this study (1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine perchlorate [DiI],DiD,DiR,and PKH26) can give rise to microenvironmental contamination,including when used in suboptimal concentration,after extensive washing procedures and in the absence of phagocytosis or marked cell death. This was observed from all cell types tested. Eventually,we show that this microenvironmental contamination is mediated by both direct cell-cell contacts and diffusible microparticles. We conclude that tracking of labeled cells using non-genetically encoded markers should always be accompanied by drastic cross validation using multimodality approaches.
View Publication
文献
Puissant A et al. (FEB 2010)
Cancer research 70 3 1042--52
Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation.
Autophagy that is induced by starvation or cellular stress can enable cancer cell survival by sustaining energy homeostasis and eliminating damaged organelles and proteins. In response to stress,cancer cells have been reported to accumulate the protein p62/SQSTM1 (p62),but its role in the regulation of autophagy is controversial. Here,we report that the plant phytoalexin resveratrol (RSV) triggers autophagy in imatinib-sensitive and imatinib-resistant chronic myelogenous leukemia (CML) cells via JNK-dependent accumulation of p62. JNK inhibition or p62 knockdown prevented RSV-mediated autophagy and antileukemic effects. RSV also stimulated AMPK,thereby inhibiting the mTOR pathway. AMPK knockdown or mTOR overexpression impaired RSV-induced autophagy but not JNK activation. Lastly,p62 expression and autophagy in CD34+ progenitors from patients with CML was induced by RSV,and disrupting autophagy protected CD34+ CML cells from RSV-mediated cell death. We concluded that RSV triggered autophagic cell death in CML cells via both JNK-mediated p62 overexpression and AMPK activation. Our findings show that the JNK and AMPK pathways can cooperate to eliminate CML cells via autophagy.
View Publication
文献
Sharma S et al. (MAR 2010)
Cytometry. Part B,Clinical cytometry 78 2 123--9
Electronic volume, aldehyde dehydrogenase, and stem cell marker expression in cells from human peripheral blood apheresis samples.
BACKGROUND: Over-expression of aldehyde dehydrogenase and other stem cell markers is characteristic of cells with tumorigenic potential in NOD/SCID mice. Most of these studies have focused on metastatic cells in bone marrow and on solid tumors. There are no studies on correlation of marker expression with ALDH1 expression in cells from human peripheral blood apheresis (HPC-A) samples. METHODS: HPC-A samples from 44 patients were incubated with Aldefluor with or without the presence of aldehyde dehydrogenase inhibitor DEAB. Cells with high aldehyde dehydrogenase expression (ALDH1(bright)) were analyzed for stem/progenitor markers CD34,CD90,CD117,and CD133. Electronic volume measured by Coulter principal in a Quanta flow analyzer was correlated with ALDH1 and marker expression. RESULTS: In ALDH1(bright)/SSC(low) cells,0.13% of the cells had CD34(+) expression and three distinct populations were seen. Expression of CD90 was dim and the frequency of ALDH1(bright)/SSC(low)/CD90(dim) cells amongst the nonlineage depleted samples was 0.04%. CD117(dim-bright) expression was seen in 0.17% of the samples. Three distinct populations of cells with CD133 expression were seen in ALDH1(bright)/SSC(low) nonlineage depleted cells with a frequency of 0.28%. The ALDH1(bright)/CD90(dim) cells had the smallest mean electronic volume of 264.9 microm(3) when compared with cells with CD34(bright) expression (270.2 microm(3)) and ALDH1(dim)/CD90(dim) cells (223 microm(3)). CONCLUSIONS: ALDH1(bright)/SSC(low) cells show heterogeneity in expression of the four stem cell markers studied. The CD90 cells in both the ALDH1(bright) and ALDH1(dim) populations had the smallest mean electronic volume when compared with similar cells with CD117 expression.
View Publication