若您需要咨询产品或有任何技术问题,请通过官方电话 400 885 9050 或邮箱 info.cn@stemcell.com 与我们联系。

RosetteSep™人T细胞富集抗体混合物

免疫密度负选试剂混合物
只有 %1
¥2,310.00

产品号 #(选择产品)

产品号 #15021_C

通过免疫密度分离法分选未被标记的T细胞

产品优势

  • 快捷、操作简单     
  • 不需要特殊设备或额外培训
  • 分选得到的细胞不带标记
  • 可与SepMate™联合使用,实现一致的高通量样本处理

产品组分包括

  • RosetteSep™人KT细胞富集抗体混合物(产品号 #15021     )
    • RosetteSep™人T细胞富集抗体混合物,2mL
  • RosetteSep™人T细胞富集抗体混合物(产品号 #15025)
    • RosetteSep™人T细胞富集抗体混合物,5x2mL
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more
专为您的实验方案打造的产品
要查看实验方案所需的所有配套产品,请参阅《实验方案与技术文档》

总览

RosetteSep™人T细胞富集抗体混合物通过负选从全血分离T细胞。四聚体抗体复合物可识别非T细胞和红细胞(RBC)表面的糖蛋白A,从而靶向去除非目的细胞。使用     密度梯度离心液(如RosetteSep™ DM-L(产品号 #15705)或Lymphoprep™(产品号 #18060)离心后,非目的细胞会与红细胞一起沉淀。纯化的T细胞为血浆和密度梯度离心液的交界界面中高度富集的细胞。

分类
细胞分选试剂盒
 
细胞类型
T 细胞
 
种属

 
样本来源
白膜层、全血
 
分选方法
负选
 
应用
细胞分选
 
品牌
RosetteSep
 
研究领域
免疫
 

实验数据

Typical RosetteSep™ HLA T Cell Enrichment Profile

Figure 1. Typical RosetteSep™ T Cell Enrichment Profile

Starting with fresh whole blood the CD3+ cell content of the enriched fraction typically ranges from 90% - 97%. Red blood cells were removed by lysis prior to flow cytometry.

产品说明书及文档

请在《产品说明书》中查找相关支持信息和使用说明,或浏览下方更多实验方案。

Document Type
Product Name
Catalog #
Lot #
Language
Catalog #
15021, 15061
Lot #
All
Language
English
Document Type
Safety Data Sheet
Catalog #
15021, 15061
Lot #
All
Language
English

应用领域

本产品专为以下研究领域设计,适用于工作流程中的高亮阶段。探索这些工作流程,了解更多我们为各研究领域提供的其他配套产品。

相关材料与文献

技术资料 (9)

常见问题 (9)

What is RosetteSep™?

RosetteSep™ is a rapid cell separation procedure for the isolation of purified cells directly from whole blood, without columns or magnets.

How does RosetteSep™ work?

The antibody cocktail crosslinks unwanted cells to red blood cells (RBCs), forming rosettes. The unwanted cells then pellet with the free RBCs when centrifuged over a density centrifugation medium (e.g. Ficoll-Paque™ PLUS, Lymphoprep™).

What factors affect cell recovery?

The temperature of the reagents can affect cell recovery. All reagents should be at room temperature (sample, density centrifugation medium, PBS, centrifuge) before performing the isolations. Layering can also affect recovery so be sure to carefully layer the sample to avoid mixing with the density centrifugation medium as much as possible. Be sure to collect the entire enriched culture without disturbing the RBC pellet. A small amount of density centrifugation medium can be collected without worry.

Which cell samples can RosetteSep™ be used with?

RosetteSep™ can be used with leukapheresis samples, bone marrow or buffy coat, as long as: the concentration of cells does not exceed 5 x 107 per mL (can dilute if necessary); and there are at least 100 RBCs for every nucleated cell (RBCs can be added if necessary).

Can RosetteSep™ be used with previously frozen or cultured cells?

Yes. Cells should be re-suspended at 2 - 5 x 107 cells / mL in PBS + 2% FBS. Fresh whole blood should be added at 250 µL per mL of sample, as a source of red cells.

Can RosetteSep™ be used to enrich progenitors from cord blood?

Yes. Sometimes cord blood contains immature nucleated red cells that have a lower density than mature RBCs. These immature red cells do not pellet over Ficoll™, which can lead to a higher RBC contamination than peripheral blood separations.

Does RosetteSep™ work with mouse cells?

No, but we have developed EasySep™, a magnetic-based cell isolation system which works with mouse and other non-human species.

Which anticoagulant should be used with RosetteSep™?

Peripheral blood should be collected in heparinized Vacutainers. Cord blood should be collected in ACD.

Should the anticoagulant be washed off before using RosetteSep™?

No, the antibody cocktail can be added directly to the sample.

文献 (61)

A deep single cell mass cytometry approach to capture canonical and noncanonical cell cycle states M. Amouzgar et al. Nature Communications 2025 Oct

Abstract

The cell cycle (CC) underpins diverse cell processes like cell differentiation, cell expansion, and tumorigenesis but current single-cell (sc) strategies study CC as: coarse phases, rely on transcriptomic signatures, use imaging modalities limited to adherent cells, or lack high-throughput multiplexing. To solve this, we develop an expanded, Mass Cytometry (MC) approach with 48 CC-related molecules that deeply phenotypes the diversity of scCC states. Using Cytometry by Time of Flight, we quantify scCC states across suspension and adherent cell lines, and stimulated primary human T cells. Our approach captures the diversity of scCC states, including atypical CC states beyond canonical definitions. Pharmacologically-induced CC arrest reveals that perturbations exacerbate noncanonical states and induce previously unobserved states. Notably, primary cells escaping CC inhibition demonstrated aberrant CC states compared to untreated cells. Our approach enables deeper phenotyping of CC biology that generalizes to diverse cell systems with simultaneous multiplexing and integration with MC platforms. Subject terms: Assay systems, Proteomics, Cell biology, Immunology, Systems biology
Retinol Binding Protein 4 reactivates latent HIV-1 by triggering canonical NF-κB, JAK/STAT5 and JNK signalling C. Pastorio et al. Signal Transduction and Targeted Therapy 2025 Oct

Abstract

Reactivation of the latent viral reservoirs is crucial for a cure of HIV/AIDS. However, current latency reversing agents are inefficient, and the endogenous factors that have the potential to reactivate HIV in vivo remain poorly understood. To identify natural activators of latent HIV-1, we screened a comprehensive peptide/protein library derived from human hemofiltrate, representing the entire blood peptidome, using J-Lat cell lines harboring transcriptionally silent HIV-1 GFP reporter viruses. Fractions potently reactivating HIV-1 from latency contained human Retinol Binding Protein 4 (RBP4), the carrier of retinol (Vitamin A). We found that retinol-bound holo-RBP4 but not retinol-free apo-RBP4 strongly reactivates HIV-1 in a variety of latently infected T cell lines. Functional analyses indicate that this reactivation involves activation of the canonical NF-κB pathway and is strengthened by JAK/STAT5 and JNK signalling but does not require retinoic acid production. High levels of RBP4 were detected in plasma from both healthy individuals and people living with HIV-1. Physiological concentrations of RBP4 induced significant viral reactivation in latently infected cells from individuals on long-term antiretroviral therapy with undetectable viral loads. As a potent natural HIV-1 latency-reversing agent, RBP4 offers a novel approach to activating the latent reservoirs and bringing us closer to a cure. Subject terms: Preclinical research, Infectious diseases
A hexamerization-enhanced, Fc-silenced agonistic CD27 antibody amplifies T-cell effector functions as single agent and in combination with PD-1 blockade I. Altıntaş et al. Scientific Reports 2025 Jul

Abstract

HexaBody-CD27 (GEN1053/BNT313) is an investigational novel agonistic CD27 antibody engineered to enhance T-cell costimulation and promote antitumor immunity. Through the introduction of a hexamerization-enhancing mutation in the IgG Fc domain, HexaBody-CD27 was designed to drive clustering and activation of CD27 via intermolecular Fc:Fc interactions between membrane-bound antibodies, independent of crosslinking by FcγR-bearing cells. HexaBody-CD27 carries an Fc-silencing mutation to prevent T-cell depletion through Fc-mediated effector functions. In vitro, HexaBody-CD27 induced CD27 receptor signaling independent of FcγR-mediated crosslinking in a reporter assay. It also enhanced T-cell proliferation, cytotoxic activity and proinflammatory cytokine secretion in primary human lymphocytes. In contrast to benchmark IgG1 CD27 antibodies, HexaBody-CD27 did not induce phagocytosis of T cells in vitro. HexaBody-CD27 promoted ex vivo tumor infiltrating lymphocyte (TIL) expansion in non-small cell lung cancer (NSCLC) specimens, in particular of CD8 + TILs. The combination of HexaBody-CD27 with an anti-PD-1 antibody enhanced T-cell proliferation, cytokine secretion, and cytotoxic activity in vitro compared to either compound alone. In conclusion, HexaBody-CD27 enhanced T-cell activation and effector functions in an FcγR-crosslinking-independent manner, without inducing T-cell depletion. The immune agonist activity of HexaBody-CD27 was potentiated in combination with PD-1 blockade.

更多信息

更多信息
物种 人类
样本来源 全血, 白膜层
Selection Method Negative
质量保证:

产品仅供研究使用,不用于针对人或动物的诊断或治疗。 欲获悉更多关于STEMCELL的质控信息,请访问 STEMCELL.CN/COMPLIANCE.
Copyright © 2025 by STEMCELL Technologies. All rights reserved.

在线联系