M. Hasmann and I. Schemainda (nov 2003)
Cancer research 63 21 7436--42
FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis.
Deregulation of apoptosis,the physiological form of cell death,is closely associated with immunological diseases and cancer. Apoptosis is activated either by death receptor-driven or mitochondrial pathways,both of which may provide potential targets for novel anticancer drugs. Although several ligands stimulating death receptors have been described,the actual molecular events triggering the mitochondrial pathway are largely unknown. Here,we show initiation of apoptosis by gradual depletion of the intracellular coenzyme NAD+. We identified the first low molecular weight compound,designated FK866,which induces apoptosis by highly specific,noncompetitive inhibition of nicotinamide phosphoribosyltransferase (NAPRT),a key enzyme in the regulation of NAD+ biosynthesis from the natural precursor nicotinamide. Interference with this enzyme does not primarily intoxicate cells because the mitochondrial respiratory activity and the NAD+ -dependent redox reactions involved remain unaffected as long as NAD+ is not effectively depleted by catabolic reactions. Certain tissues,however,have a high turnover of NAD+ through its cleavage by enzymes like poly(ADP-ribose) polymerase. Such cells often rely on the more readily available nicotinamide pathway for NAD+ synthesis and undergo apoptosis after inhibition of NAPRT,whereas cells effectively using the nicotinic acid pathway for NAD+ synthesis remain unaffected. In support of this concept,FK866 effectively induced delayed cell death by apoptosis in HepG2 human liver carcinoma cells with an IC(50) of approximately 1 nM,did not directly inhibit mitochondrial respiratory activity,but caused gradual NAD+ depletion through specific inhibition of NAPRT. This enzyme,when partially purified from K562 human leukemia cells,was noncompetitively inhibited by FK866,and the inhibitor constants were calculated to be 0.4 nM for the enzyme/substrate complex (K(i)) and 0.3 nM for the free enzyme (K(i)'),respectively. Nicotinic acid and nicotinamide were both found to have antidote potential for the cellular effects of FK866. FK866 may be used for treatment of diseases implicating deregulated apoptosis such as cancer for immunosuppression or as a sensitizer for genotoxic agents. Furthermore,it may provide an important tool for investigation of the molecular triggers of the mitochondrial pathway leading to apoptosis through enabling temporal separation of NAD+ decrease from ATP breakdown and apoptosis by several days.
View Publication
Chen S et al. (JUN 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 25 10482--7
Reversine increases the plasticity of lineage-committed mammalian cells.
Previously,a small molecule,reversine,was identified that reverses lineage-committed murine myoblasts to a more primitive multipotent state. Here,we show that reversine can increase the plasticity of C2C12 myoblasts at the single-cell level and that reversine-treated cells gain the ability to differentiate into osteoblasts and adipocytes under lineage-specific inducing conditions. Moreover,reversine is active in multiple cell types,including 3T3E1 osteoblasts and human primary skeletal myoblasts. Biochemical and cellular experiments suggest that reversine functions as a dual inhibitor of nonmuscle myosin II heavy chain and MEK1,and that both activities are required for reversine's effect. Inhibition of MEK1 and nonmuscle myosin II heavy chain results in altered cell cycle and changes in histone acetylation status,but other factors also may contribute to the activity of reversine,including activation of the PI3K signaling pathway.
View Publication
产品类型:
产品号#:
72612
72614
产品名:
Reversine
逆转素(Reversine)
Bhattacharyya S and Khanduja KL (APR 2010)
Acta biochimica et biophysica Sinica 42 4 237--42
New hope in the horizon: cancer stem cells.
The major goal of researchers and oncologists is to develop promising ground for novel therapeutic strategies to prevent recurrence or relapse of cancer. Recent evidences suggest that a subset of cells called cancer stem cells (CSCs) are present within the tumor mass which possess tumorigenic capacity and may be responsible for propagation,relapse,and metastatic dissemination. These cells have certain stem cell-like properties,e.g. quiescence,selfrenewal,asymmetric division,and multidrug resistance which allow them to drive tumor growth and evade conventional therapies. A number of markers and assays have been designed to isolate and characterize the CSC population from the bulk tumor. The objective now is to selectively target the CSCs in order to eliminate the tumor from root,overcoming the emergence of clones capable of evading traditional therapy. This approach may help in increasing the overall disease-free survival in some cancers.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Chen S et al. (JAN 2004)
Journal of the American Chemical Society 126 2 410--1
Dedifferentiation of lineage-committed cells by a small molecule.
Combinatorial libraries were screened for molecules that induce mouse myogenic lineage committed cells to dedifferentiate in vitro. A 2,6-disubstituted purine,reversine,was discovered that induces lineage reversal of C2C12 cells to become multipotent progenitor cells which can redifferentiate into osteoblasts and adipocytes. This and other such molecules are likely to provide new insights into the molecular mechanisms that control cellular dedifferentiation and may ultimately be useful to in vivo stem cell biology and therapy.
View Publication
产品类型:
产品号#:
72612
72614
产品名:
Reversine
逆转素(Reversine)
Perez JE et al. (FEB 2017)
Nanotechnology 28 5 55703
Mesenchymal stem cells cultured on magnetic nanowire substrates.
Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work,an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments,as well as immuno-stained for the focal adhesion protein vinculin,and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles,suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control,the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally,a net of filopodia surrounded each cell,suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall,the NW array is a promising nanostructured platform for studying and influencing hMSCs differentiation.
View Publication
产品类型:
产品号#:
70022
70071
产品名:
Wu X et al. (JAN 2018)
Cell 172 3 423--438.e25
Intrinsic Immunity Shapes Viral Resistance of Stem Cells.
Stem cells are highly resistant to viral infection compared to their differentiated progeny; however,the mechanism is mysterious. Here,we analyzed gene expression in mammalian stem cells and cells at various stages of differentiation. We find that,conserved across species,stem cells express a subset of genes previously classified as interferon (IFN) stimulated genes (ISGs) but that expression is intrinsic,as stem cells are refractory to interferon. This intrinsic ISG expression varies in a cell-type-specific manner,and many ISGs decrease upon differentiation,at which time cells become IFN responsive,allowing induction of a broad spectrum of ISGs by IFN signaling. Importantly,we show that intrinsically expressed ISGs protect stem cells against viral infection. We demonstrate the in vivo importance of intrinsic ISG expression for protecting stem cells and their differentiation potential during viral infection. These findings have intriguing implications for understanding stem cell biology and the evolution of pathogen resistance.
View Publication
Zhou T et al. (JUL 2011)
Journal of the American Society of Nephrology : JASN 22 7 1221--1228
Generation of induced pluripotent stem cells from urine
Forced expression of selected transcription factors can transform somatic cells into embryonic stem cell (ESC)-like cells,termed induced pluripotent stem cells (iPSCs). There is no consensus regarding the preferred tissue from which to harvest donor cells for reprogramming into iPSCs,and some donor cell types may be more prone than others to accumulation of epigenetic imprints and somatic cell mutations. Here,we present a simple,reproducible,noninvasive method for generating human iPSCs from renal tubular cells present in urine. This procedure eliminates many problems associated with other protocols,and the resulting iPSCs display an excellent ability to differentiate. These data suggest that urine may be a preferred source for generating iPSCs.
View Publication
Naive embryonic stem cells hold great promise for research and therapeutics as they have broad and robust developmental potential. While such cells are readily derived from mouse blastocysts it has not been possible to isolate human equivalents easily,although human naive-like cells have been artificially generated (rather than extracted) by coercion of human primed embryonic stem cells by modifying culture conditions or through transgenic modification. Here we show that a sub-population within cultures of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) manifests key properties of naive state cells. These naive-like cells can be genetically tagged,and are associated with elevated transcription of HERVH,a primate-specific endogenous retrovirus. HERVH elements provide functional binding sites for a combination of naive pluripotency transcription factors,including LBP9,recently recognized as relevant to naivety in mice. LBP9-HERVH drives hESC-specific alternative and chimaeric transcripts,including pluripotency-modulating long non-coding RNAs. Disruption of LBP9,HERVH and HERVH-derived transcripts compromises self-renewal. These observations define HERVH expression as a hallmark of naive-like hESCs,and establish novel primate-specific transcriptional circuitry regulating pluripotency.
View Publication
Buckley NE et al. (OCT 2013)
Nucleic acids research 41 18 8601--8614
BRCA1 is a key regulator of breast differentiation through activation of Notch signalling with implications for anti-endocrine treatment of breast cancers.
Here,we show for the first time,that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene,an event requiring $$Np63. We propose that this BRCA1/$$Np63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells,as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-$$ (ER-$$) expression and other luminal markers. A Notch mimetic peptide could activate an ER-$$ promoter reporter in a BRCA1-dependent manner,whereas Notch inhibition using a $$-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together,these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
(Apr 2025)
Cancer Chemotherapy and Pharmacology 95 1
Neurofilament light chain as a marker for neuronal damage: integrating in vitro studies and clinical findings in patients with oxaliplatin-induced neuropathy
PurposeOxaliplatin-induced peripheral neuropathy (OIPN) is a chronic,debilitating late effect following oxaliplatin treatment. Neurofilament light chain (NfL) is a structural protein found in nerve axons that was investigated upon oxaliplatin exposure in vitro and in vivo correlated to symptoms of OIPN in colorectal cancer patients receiving oxaliplatin.MethodsHuman sensory neurons,derived from induced pluripotent stem cells,were exposed to clinically relevant concentrations of oxaliplatin in vitro,with NfL concentrations measured in the cell medium. The prospective clinical study included patients with colorectal cancer undergoing chemotherapy therapy with or without oxaliplatin. Possible OIPN was defined as bilateral presence of numbness and/or presence of pricking sensations in the feet documented in an interview at the time of blood sampling prior to,3,and 6 months after initiating treatment.ResultsOxaliplatin exposure led to a dose-dependent NfL increase in vitro. In the clinical cohort of 30 patients (18 in the oxaliplatin group),NfL levels rose at 3 and 6 months compared to controls. NfL level changes correlated to OIPN symptoms at the 6-month timepoint (rho 0.81,p?0.001). However,the interindividual variation was substantial,and most patients showed only a minor increase in NfL.ConclusionBoth in vitro and clinical data indicate that oxaliplatin exposure results in elevated NfL levels. Further prospective studies are needed to evaluate NfL as an early biomarker for OIPN,specifically focusing on the timing of blood sampling during chemotherapy treatment to enable the timely reduction of oxaliplatin.Supplementary InformationThe online version contains supplementary material available at 10.1007/s00280-025-04773-w.
View Publication