Li Y et al. (AUG 1998)
Molecular and cellular biology 18 8 4719--31
Molecular determinants of AHPN (CD437)-induced growth arrest and apoptosis in human lung cancer cell lines.
6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN or CD437),originally identified as a retinoic acid receptor gamma-selective retinoid,was previously shown to induce growth inhibition and apoptosis in human breast cancer cells. In this study,we investigated the role of AHPN/CD437 and its mechanism of action in human lung cancer cell lines. Our results demonstrated that AHPN/CD437 effectively inhibited lung cancer cell growth by inducing G0/G1 arrest and apoptosis,a process that is accompanied by rapid induction of c-Jun,nur77,and p21(WAF1/CIP1). In addition,we found that expression of p53 and Bcl-2 was differentially regulated by AHPN/CD437 in different lung cancer cell lines and may play a role in regulating AHPN/CD437-induced apoptotic process. On constitutive expression of the c-JunAla(63,73) protein,a dominant-negative inhibitor of c-Jun,in A549 cells,nur77 expression and apoptosis induction by AHPN/CD437 were impaired,whereas p21(WAF1/CIP1) induction and G0/G1 arrest were not affected. Furthermore,overexpression of antisense nur77 RNA in A549 and H460 lung cancer cell lines largely inhibited AHPN/CD437-induced apoptosis. Thus,expression of c-Jun and nur77 plays a critical role in AHPN/CD437-induced apoptosis. Together,our results reveal a novel pathway for retinoid-induced apoptosis and suggest that AHPN/CD437 or analogs may have a better therapeutic efficacy against lung cancer.
View Publication
Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes.
Proteasome inhibitors benefit patients with multiple myeloma and B cell-dependent autoimmune disorders but exert toxicity from inhibition of proteasomes in other cells. Toxicity should be minimized by reversible inhibition of the immunoproteasome β5i subunit while sparing the constitutive β5c subunit. Here we report β5i-selective inhibition by asparagine-ethylenediamine (AsnEDA)-based compounds and present the high-resolution cryo-EM structural analysis of the human immunoproteasome. Despite inhibiting noncompetitively,an AsnEDA inhibitor binds the active site. Hydrophobic interactions are accompanied by hydrogen bonding with β5i and β6 subunits. The inhibitors are far more cytotoxic for myeloma and lymphoma cell lines than for hepatocarcinoma or non-activated lymphocytes. They block human B-cell proliferation and promote apoptotic cell death selectively in antibody-secreting B cells,and to a lesser extent in activated human T cells. Reversible,β5i-selective inhibitors may be useful for treatment of diseases involving activated or neoplastic B cells or activated T cells.
View Publication
产品类型:
产品号#:
17951
17951RF
产品名:
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
文献
Z. Chen et al. (nov 2019)
Gastroenterology 156 4 1127--1139.e8
Integrated Analysis of Mouse and Human Gastric Neoplasms Identifies Conserved microRNA Networks in Gastric Carcinogenesis.
BACKGROUND AIMS microRNAs (miRNAs) are small non-coding RNAs that bind to 3'UTR regions of mRNAs to promote their degradation or block their translation. Mice with disruption of the trefoil factor 1 gene (Tff1) develop gastric neoplasms. We studied these mice to identify conserved miRNA networks involved in gastric carcinogenesis. METHODS We performed next-generation miRNA sequencing analysis of normal gastric tissues (based on histology) from subjects without evidence of gastric neoplasm from patients (n=64) and TFF1-knockout mice (n=22). We validated our findings using 270 normal gastric tissues (including 61 samples from patients without evidence of neoplastic lesions) and 234 gastric tumor tissues from 3 separate cohorts of patients and from mice. We performed molecular and functional assays using cell lines (MKN28,MKN45,STKM2,and AGS cells),gastric organoids,and mice with xenograft tumors. RESULTS We identified 117 miRNAs that were significantly deregulated in mouse and human gastric tumor tissues,compared with non-tumor tissues. We validated changes in levels of 6 miRNAs by quantitative real-time PCR analyses of neoplastic gastric tissues from mice (n=39) and 3 independent cohorts patients (332 patients total). We found levels of MIR135B-5p,MIR196B-5p,and MIR92A-5p to be increased in tumor tissues whereas levels of MIR143-3p,MIR204-5p,and MIR133-3p were decreased in tumor tissues. Levels of MIR143-3p were reduced not only in gastric cancer tissues,but also in normal tissues adjacent to tumors in humans and low-grade dysplasia in mice. Transgenic expression of MIR143-3p in gastric cancer cell lines reduced their proliferation and restored their sensitivity to cisplatin. AGS cells with stable transgenic expression of MIR143-3p grew more slowly as xenograft tumors in mice than control AGS cells; tumor growth from AGS cells that expressed MIR143-3p,but not control cells,was sensitive to cisplatin. We identified and validated bromodomain containing 2 (BRD2) as a direct target of MIR143-3p; increased levels of BRD2 in gastric tumors associated with shorter survival times of patients. CONCLUSIONS In an analysis of miRNA profiles of gastric tumors from mice and human patients,we identified a conserved signature associated with early stages of gastric tumorigenesis. Strategies to restore MIR143-3p or inhibit BRD2 might be developed for treatment of gastric cancer.
View Publication
Rasheed ZA et al. (MAR 2010)
Journal of the National Cancer Institute 102 5 340--51
Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma.
BACKGROUND: Specific populations of highly tumorigenic cells are thought to exist in many human tumors,including pancreatic adenocarcinoma. However,the clinical significance of these tumor-initiating (ie,cancer stem) cells remains unclear. Aldehyde dehydrogenase (ALDH) activity can identify tumor-initiating cells and normal stem cells from several human tissues. We examined the prognostic significance and functional features of ALDH expression in pancreatic adenocarcinoma. METHODS: ALDH expression was analyzed by immunohistochemistry in 269 primary surgical specimens of pancreatic adenocarcinoma and examined for association with clinical outcomes and in paired primary tumors and metastatic lesions from eight pancreatic cancer patients who had participated in a rapid autopsy program. The clonogenic growth potential of ALDH-positive pancreatic adenocarcinoma cells was assessed in vitro by a colony formation assay and by tumor growth in immunodeficient mice (10-14 mice per group). Mesenchymal features of ALDH-positive pancreatic tumor cells were examined by using quantitative reverse transcription-polymerase chain reaction and an in vitro cell invasion assay. Gene expression levels and the invasive potential of ADLH-positive pancreatic cancer cells relative to the bulk cell population were examined by reverse transcription-polymerase chain reaction and an in vitro invasion assays,respectively. All statistical tests were two-sided. RESULTS: ALDH-positive tumor cells were detected in 90 of the 269 primary surgical specimens,and their presence was associated with worse survival (median survival for patients with ALDH-positive vs ALDH-negative tumors: 14 vs 18 months,hazard ratio of death = 1.28,95% confidence interval = 1.02 to 1.68,P = .05). Six (75%) of the eight patients with matched primary and metastatic tumor samples had ALDH-negative primary tumors,and in four (67%) of these six patients,the matched metastatic lesions (located in liver and lung) contained ALDH-positive cells. ALDH-positive cells were approximately five- to 11-fold more clonogenic in vitro and in vivo compared with unsorted or ALHD-negative cells,expressed genes consistent with a mesenchymal state,and had in vitro migratory and invasive potentials that were threefold greater than those of unsorted cells. CONCLUSIONS: ALDH expression marks pancreatic cancer cells that have stem cell and mesenchymal features. The enhanced clonogenic growth and migratory properties of ALDH-positive pancreatic cancer cells suggest that they play a key role in the development of metastatic disease that negatively affects the overall survival of patients with pancreatic adenocarcinoma.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
文献
Paull D et al. (SEP 2015)
Nature methods 12 9 885--892
Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells.
Induced pluripotent stem cells (iPSCs) are an essential tool for modeling how causal genetic variants impact cellular function in disease,as well as an emerging source of tissue for regenerative medicine. The preparation of somatic cells,their reprogramming and the subsequent verification of iPSC pluripotency are laborious,manual processes limiting the scale and reproducibility of this technology. Here we describe a modular,robotic platform for iPSC reprogramming enabling automated,high-throughput conversion of skin biopsies into iPSCs and differentiated cells with minimal manual intervention. We demonstrate that automated reprogramming and the pooled selection of polyclonal pluripotent cells results in high-quality,stable iPSCs. These lines display less line-to-line variation than either manually produced lines or lines produced through automation followed by single-colony subcloning. The robotic platform we describe will enable the application of iPSCs to population-scale biomedical problems including the study of complex genetic diseases and the development of personalized medicines.
View Publication
产品类型:
产品号#:
05110
产品名:
STEMdiff™定型内胚层检测试剂盒
文献
Ibiza S et al. (JUL 2016)
Nature 535 7612 440--443
Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence.
Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed,but how ILC3 perceive,integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial"ILC3"epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22),impaired epithelial reactivity,dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably,ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly,glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit,revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals.
View Publication
产品类型:
产品号#:
06005
产品名:
IntestiCult™ 肠道类器官生长培养基 (小鼠)
文献
Iwaki T et al. ( 2003)
BioTechniques 35 3 482--484,486
Rapid selection of Drosophila S2 cells with the puromycin resistance gene.
Growth of mesenchymal stem cells on electrospun type I collagen nanofibers.
We reconstituted type I collagen nanofibers prepared by electrospin technology and examined the morphology,growth,adhesion,cell motility,and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) on three nano-sized diameters (50-200,200-500,and 500-1,000 nm). Results from scanning electron microscopy showed that cells on the nanofibers had a more polygonal and flattened cell morphology. MTS (3-[4,5-dimethythiazol-2-yl]-5-[3-carboxy-methoxyphenyl]-2-[4-sul-fophenyl]-2H-tetrazolium compound) assay demonstrated that the MSCs grown on 500-1,000-nm nanofibers had significantly higher cell viability than the tissue culture polystyrene control. A decreased amount of focal adhesion formation was apparent in which quantifiable staining area of the cytoplasmic protein vinculin for the 200-500-nm nanofibers was 39% less compared with control,whereas the area of quantifiable vinculin staining was 45% less for both the 200-500-nm and 500-1,000-nm nanofibers. The distances of cell migration were quantified on green fluorescent protein-nucleofected cells and was 56.7%,37.3%,and 46.3% for 50-200,200-500,and 500-1,000 nm,respectively,compared with those on the control. Alkaline phosphatase activity demonstrated no differences after 12 days of osteogenic differentiation,and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed comparable osteogenic gene expression of osteocalcin,osteonectin,and ostepontin between cells differentiated on polystyrene and nanofiber surfaces. Moreover,single-cell RT-PCR of type I collagen gene expression demonstrated higher expression on cells seeded on the nanofibers. Therefore,type I collagen nanofibers support the growth of MSCs without compromising their osteogenic differentiation capability and can be used as a scaffold for bone tissue engineering to facilitate intramembranous bone formation. Further efforts are necessary to enhance their biomimetic properties.
View Publication
产品类型:
产品号#:
15027
15067
产品名:
RosetteSep™人骨髓祖细胞预富集抗体混合物
RosetteSep™人骨髓祖细胞预富集抗体混合物
文献
Dylla SJ et al. (JAN 2008)
PloS one 3 6 e2428
Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy.
BACKGROUND: Patients generally die of cancer after the failure of current therapies to eliminate residual disease. A subpopulation of tumor cells,termed cancer stem cells (CSC),appears uniquely able to fuel the growth of phenotypically and histologically diverse tumors. It has been proposed,therefore,that failure to effectively treat cancer may in part be due to preferential resistance of these CSC to chemotherapeutic agents. The subpopulation of human colorectal tumor cells with an ESA(+)CD44(+) phenotype are uniquely responsible for tumorigenesis and have the capacity to generate heterogeneous tumors in a xenograft setting (i.e. CoCSC). We hypothesized that if non-tumorigenic cells are more susceptible to chemotherapeutic agents,then residual tumors might be expected to contain a higher frequency of CoCSC. METHODS AND FINDINGS: Xenogeneic tumors initiated with CoCSC were allowed to reach approximately 400 mm(3),at which point mice were randomized and chemotherapeutic regimens involving cyclophosphamide or Irinotecan were initiated. Data from individual tumor phenotypic analysis and serial transplants performed in limiting dilution show that residual tumors are enriched for cells with the CoCSC phenotype and have increased tumorigenic cell frequency. Moreover,the inherent ability of residual CoCSC to generate tumors appears preserved. Aldehyde dehydrogenase 1 gene expression and enzymatic activity are elevated in CoCSC and using an in vitro culture system that maintains CoCSC as demonstrated by serial transplants and lentiviral marking of single cell-derived clones,we further show that ALDH1 enzymatic activity is a major mediator of resistance to cyclophosphamide: a classical chemotherapeutic agent. CONCLUSIONS: CoCSC are enriched in colon tumors following chemotherapy and remain capable of rapidly regenerating tumors from which they originated. By focusing on the biology of CoCSC,major resistance mechanisms to specific chemotherapeutic agents can be attributed to specific genes,thereby suggesting avenues for improving cancer therapy.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Kryczek I et al. (JAN 2012)
International journal of cancer. Journal international du cancer 130 1 29--39
Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells.
Identification of cancer stem cells is crucial for advancing cancer biology and therapy. Several markers including CD24,CD44,CD117,CD133,the G subfamily of ATP-binding cassette transporters (ABCG),epithelial specific antigen (ESA) and aldehyde dehydrogenase (ALDH) are used to identify and investigate human epithelial cancer stem cells in the literature. We have now systemically analyzed and compared the expression of these markers in fresh ovarian epithelial carcinomas. Although the expression levels of these markers were unexpectedly variable and partially overlapping in fresh ovarian cancer cells from different donors,we reliably detected important levels of CD133 and ALDH in the majority of fresh ovarian cancer. Furthermore,most of these stem cell markers including CD133 and ALDH were gradually lost following in vitro passage of primary tumor cells. However,the expression of ALDH and CD133,but not CD24,CD44 and CD117,could be partially rescued by the in vitro serum-free and sphere cultures and by the in vivo passage in the immune-deficient xenografts. ALDH+ and CD133+ cells formed three-dimensional spheres more efficiently than their negative counterparts. These sphere-forming cells expressed high levels of stem cell core gene transcripts and could be expanded and form additional spheres in long-term culture. ALDH+,CD133+ and ALDH+ CD133+ cells from fresh tumors developed larger tumors more rapidly than their negative counterparts. This property was preserved in the xenografted tumors. Altogether,the data suggest that ALDH+ and CD133+ cells are enriched with ovarian cancer-initiating (stem) cells and that ALDH and CD133 may be widely used as reliable markers to investigate ovarian cancer stem cell biology.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Crescini E et al. (JAN 2013)
Biochimica et biophysica acta 1833 1 140--7
Ascorbic acid rescues cardiomyocyte development in Fgfr1(-/-) murine embryonic stem cells.
Fibroblast growth factor receptor 1 (Fgfr1) gene knockout impairs cardiomyocyte differentiation in murine embryonic stem cells (mESC). Here,various chemical compounds able to enhance cardiomyocyte differentiation in mESC [including dimethylsulfoxide,ascorbic acid (vitC),free radicals and reactive oxygen species] were tested for their ability to rescue the cardiomyogenic potential of Fgfr1(-/-) mESC. Among them,only the reduced form of vitC,l-ascorbic acid,was able to recover beating cell differentiation in Fgfr1(-/-) mESC. The appearance of contracting cells was paralleled by the expression of early and late cardiac gene markers,thus suggesting their identity as cardiomyocytes. In the attempt to elucidate the mechanism of action of vitC on Fgfr1(-/-) mESC,we analyzed several parameters related to the intracellular redox state,such as reactive oxygen species content,Nox4 expression,and superoxide dismutase activity. The results did not show any relationship between the antioxidant capacity of vitC and cardiomyocyte differentiation in Fgfr1(-/-) mESC. No correlation was found also for the ability of vitC to modulate the expression of pluripotency genes. Then,we tested the hypothesis that vitC was acting as a prolyl hydroxylase cofactor by maintaining iron in a reduced state. We first analyze hypoxia inducible factor (HIF)-1α mRNA and protein levels that were found to be slightly upregulated in Fgfr1(-/-) cells. We treated mESC with Fe(2+) or the HIF inhibitor CAY10585 during the first phases of the differentiation process and,similar to vitC,the two compounds were able to rescue cardiomyocyte formation in Fgfr1(-/-) mESC,thus implicating HIF-1α modulation in Fgfr1-dependent cardiomyogenesis.
View Publication