Farnie G et al. (APR 2007)
Journal of the National Cancer Institute 99 8 616--27
Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways.
BACKGROUND The epidermal growth factor receptor (EGFR) and Notch signaling pathways have been implicated in self-renewal of normal breast stem cells. We investigated the involvement of these signaling pathways in ductal carcinoma in situ (DCIS) of the breast. METHODS Samples of normal breast tissue (n = 15),pure DCIS tissue of varying grades (n = 35),and DCIS tissue surrounding an invasive cancer (n = 7) were used for nonadherent (i.e.,mammosphere) culture. Mammosphere cultures were treated at day 0 with gefitinib (an EGFR inhibitor),DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester) (a gamma-secretase inhibitor),or Notch 4-neutralizing antibody. Mammosphere-forming efficiency (MFE) was calculated by dividing the number of mammospheres of 60 microm or more formed by the number of single cells seeded and is expressed as a percentage. The Notch 1 intracellular domain (NICD) was detected immunohistochemically in paraffin-embedded DCIS tissue from 50 patients with at least 60 months of follow-up. All statistical tests were two-sided. RESULTS DCIS had a greater MFE than normal breast tissue (1.5% versus 0.5%,difference = 1%,95% confidence interval [CI] = 0.62% to 1.25%,Ptextless.001). High-grade DCIS had a greater MFE than low-grade DCIS (1.6% versus 1.09%,difference = 0.51%,95% CI = 0.07% to 0.94%,P = .01). The MFE of high-grade DCIS treated with gefitinib in the absence of exogenous EGF was lower than that of high-grade DCIS treated with mammosphere medium lacking gefitinib and exogenous EGF (0.56% versus 1.36%,difference 0.8%,95% CI = 0.33% to 1.4%,P = .004). Increased Notch signaling as detected by NICD staining was associated with recurrence at 5 years (P = .012). DCIS MFE was reduced when Notch signaling was inhibited using either DAPT (0.89% versus 0.51%,difference = 0.38%,95% CI = 0.2% to 0.6%,Ptextless.001) or a Notch 4-neutralizing antibody (0.97% versus 0.2%,difference = 0.77%,95% CI = 0.52% to 1.0%,Ptextless.001). CONCLUSION We describe a novel primary culture technique for DCIS. Inhibition of the EGFR or Notch signaling pathways reduced DCIS MFE.
View Publication
产品类型:
产品号#:
05620
72082
73162
产品名:
MammoCult™ 人源培养基套装
DAPT
吉非替尼
文献
Reichert AJ et al. (DEC 2015)
Protein Engineering Design and Selection 28 12 553--65
Optimisation of a system for the co-translational incorporation of a keto amino acid and its application to a tumour-specific Anticalin
The bioorthogonal keto group has attracted interest for the site-specific chemical conjugation of recombinant proteins under mild conditions,e.g. with aminooxy-functionalised fluorescent probes,radiometal chelates,toxins or polymers. However,the cotranslational incorporation of the corresponding non-canonical amino acid p-acetyl-L-phenylalanine (Apa) into proteins expressed in Escherichia coli by means of amber suppression using a previously described system with a mutated tRNA and an engineered tyrosyl-tRNA synthetase from Methanococcus jannaschii shows limited efficiency and considerable promiscuity towards endogenous amino acids. Employing a one-plasmid system that encodes all three components required for selection,i.e. the modified aminoacyl-tRNA synthetase (aaRS),the cognate amber suppressor tRNA and the enhanced green fluorescent protein equipped with an amber stop codon and serving as reporter,we have generated an Apa-specific aaRS&tRNA pair with considerably improved efficiency (17-fold increased expression) and also fidelity (6-fold). To this end,both the aaRS and the tRNA were subjected to doped random mutagenesis and selection in altogether four evolutionary cycles using fluorescence-activated bacterial cell sorting as well as automated screening of microcultures. The resulting aaRS&tRNA pair was applied to the functionalisation of an Anticalin with specificity towards oncofetal fibronectin by introducing a keto group at a permissible site for subsequent conjugation with a fluorescent dye,thus allowing visualisation of this tumour target under the microscope.
View Publication
产品类型:
产品号#:
产品名:
文献
Schwarz A et al. (MAY 1995)
The Journal of biological chemistry 270 18 10990--8
A regulatory role for sphingolipids in neuronal growth. Inhibition of sphingolipid synthesis and degradation have opposite effects on axonal branching.
Sphingolipids,particularly gangliosides,are enriched in neuronal membranes where they have been implicated as mediators of various regulatory events. We recently provided evidence that sphingolipid synthesis is necessary to maintain neuronal growth by demonstrating that in hippocampal neurons,inhibition of ceramide synthesis by Fumonisin B1 (FB1) disrupted axonal outgrowth (Harel,R. and Futerman,A. H. (1993) J. Biol. Chem. 268,14476-14481). We now analyze further the relationship between neuronal growth and sphingolipid metabolism by examining the effect of an inhibitor of glucosylceramide synthesis,D-threo-1-phenyl-2-decanoylamino-3-morpholino-1- propanol (PDMP) and by examining the effects of both FB1 and PDMP at various stages of neuronal development. No effects of FB1 or PDMP were observed during the first 2 days in culture,but by day 3 axonal morphology was significantly altered,irrespective of the time of addition of the inhibitors to the cultures. Cells incubated with FB1 or PDMP had a shorter axon plexus and less axonal branches. FB1 appeared to cause a retraction of axonal branches between days 2 and 3,although long term incubation had no apparent effect on neuronal morphology or on the segregation of axonal or dendritic proteins. In contrast,incubation of neurons with conduritol B-epoxide,an inhibitor of glucosylceramide degradation,caused an increase in the number of axonal branches and a corresponding increase in the length of the axon plexus. A direct correlation was observed between the number of axonal branch points per cell and the extent of inhibition of either sphingolipid synthesis or degradation. These results suggest that sphingolipids play an important role in the formation or stabilization of axonal branches.
View Publication
产品类型:
产品号#:
73682
73684
产品名:
Fumonisin B1
Fumonisin B1
文献
Smith GH (JAN 1996)
Breast cancer research and treatment 39 1 21--31
Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype.
An in vivo transplantation system has been used to evaluate the developmental capacities of specific mouse mammary epithelial cell populations. Specifically,mouse mammary epithelial cells with distinctly limited developmental potentials have been identified using this procedure. Two distinct epithelial cell progenitors have been identified by experiments designed to determine whether basal lobular and ductal phenotypes could develop independently under conditions imposed by a limiting dilution. The prediction that these separate epithelial progenitors must exist was based upon the results from transplantation experiments carried out in epithelium-divested mammary fat pads of syngeneic mice with mammary epithelium from two different transgenic mouse models. The results presented here demonstrate the following points: 1) lobular,i.e. secretory,progenitor cells are present as distinct entities among the mammary epithelial cells found in immature virgin female mice; 2) similarly,ductal epithelial progenitors are present within the same population; 3) lobular progenitors are present in greater numbers,although both cell populations are extremely small; 4) as expected,some inocula produce outgrowths with simultaneous development of both lobular and ductal phenotypes--it is not known whether this indicates cooperative interaction between the two epithelial progenitors or signals the presence of a third progenitor type capable of producing both ductular and lobular committed daughters; 5) these findings have important consequences in the design of experiments aimed at testing the effects of known and putative mammary oncogenes and tumor suppressor genes,using techniques which include cellular transformation in vitro followed by in vivo cultivation and evaluation.
View Publication
产品类型:
产品号#:
01700
01705
05601
05610
05620
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
EpiCult™-B 人培养基
EpiCult™-B 小鼠培养基
MammoCult™ 人源培养基套装
文献
Ramirez J-M et al. (APR 2010)
World journal of stem cells 2 2 24--33
Human pluripotent stem cells: from biology to cell therapy.
Human pluripotent stem cells (PSCs),encompassing embryonic stem cells and induced pluripotent stem cells,proliferate extensively and differentiate into virtually any desired cell type. PSCs endow regenerative medicine with an unlimited source of replacement cells suitable for human therapy. Several hurdles must be carefully addressed in PSC research before these theoretical possibilities are translated into clinical applications. These obstacles are: (1) cell proliferation; (2) cell differentiation; (3) genetic integrity; (4) allogenicity; and (5) ethical issues. We discuss these issues and underline the fact that the answers to these questions lie in a better understanding of the biology of PSCs. To contribute to this aim,we have developed a free online expression atlas,Amazonia!,that displays for each human gene a virtual northern blot for PSC samples and adult tissues (http://www.amazonia.transcriptome.eu).
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Pang ZP et al. (AUG 2011)
Nature 476 7359 220--3
Induction of human neuronal cells by defined transcription factors.
Somatic cell nuclear transfer,cell fusion,or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types. We recently observed that forced expression of a combination of three transcription factors,Brn2 (also known as Pou3f2),Ascl1 and Myt1l,can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix-loop-helix transcription factor NeuroD1,these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers,even after downregulation of the exogenous transcription factors. Importantly,the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells,as well as pluripotent stem cells,can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.
View Publication
NF-кB-regulated micro RNAs (miRNAs) in primary human brain cells.
Micro RNAs (miRNAs),small and labile ˜22 nucleotide-sized fragments of single stranded RNA,are important regulators of messenger (mRNA) complexity and in shaping the transcriptome of a cell. In this communication,we utilized amyloid beta 42 (Aβ42) peptides and interleukin-1beta (IL-1β) as a combinatorial,physiologically-relevant stress to induce miRNAs in human primary neural (HNG) cells (a co-culture of neurons and astroglia). Specific miRNA up-regulation was monitored using miRNA arrays,Northern micro-dot blots and RT-PCR. Selective NF-кB translocation and DNA binding inhibitors,including the chelator and anti-oxidant pyrollidine dithiocarbamate (PDTC) and the polyphenolic resveratrol analog CAY10512 (trans-3,5,4'-trihydroxystilbene),indicated the NF-кB sensitivity of several brain miRNAs,including miRNA-9,miRNA-125b and miRNA-146a. The inducible miRNA-125b and miRNA-146a,and their verified mRNA targets,including 15-lipoxygenase (15-LOX),synapsin-2 (SYN-2),complement factor H (CFH) and tetraspanin-12 (TSPAN12),suggests complex and highly interactive roles for NF-кB,miRNA-125b and miRNA-146a. These data further indicate that just two NF-кB-mediated miRNAs have tremendous potential to contribute to the regulation of neurotrophic support,synaptogenesis,neuroinflammation,innate immune signaling and amyloidogenesis in stressed primary neural cells of the human brain.
View Publication
产品类型:
产品号#:
产品名:
文献
Chen KG et al. (NOV 2012)
Stem Cell Research 9 3 237--248
Non-colony type monolayer culture of human embryonic stem cells
Regenerative medicine,relying on human embryonic stem cell (hESC) technology,opens promising new avenues for therapy of many severe diseases. However,this approach is restricted by limited production of the desired cells due to the refractory properties of hESC growth in vitro. It is further hindered by insufficient control of cellular stress,growth rates,and heterogeneous cellular states under current culture conditions. In this study,we report a novel cell culture method based on a non-colony type monolayer (NCM) growth. Human ESCs under NCM remain pluripotent as determined by teratoma assays and sustain the potential to differentiate into three germ layers. This NCM culture has been shown to homogenize cellular states,precisely control growth rates,significantly increase cell production,and enhance hESC recovery from cryopreservation without compromising chromosomal integrity. This culture system is simple,robust,scalable,and suitable for high-throughput screening and drug discovery.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Gallo M et al. (JAN 2013)
Cancer Research 73 1 417--427
A Tumorigenic MLL-Homeobox Network in Human Glioblastoma Stem Cells
Glioblastoma growth is driven by cancer cells that have stem cell properties,but molecular determinants of their tumorigenic behavior are poorly defined. In cancer,altered activity of the epigenetic modifiers Polycomb and Trithorax complexes may contribute to the neoplastic phenotype. Here,we provide the first mechanistic insights into the role of the Trithorax protein mixed lineage leukemia (MLL) in maintaining cancer stem cell characteristics in human glioblastoma. We found that MLL directly activates the Homeobox gene HOXA10. In turn,HOXA10 activates a downstream Homeobox network and other genes previously characterized for their role in tumorigenesis. The MLL-Homeobox axis we identified significantly contributes to the tumorigenic potential of glioblastoma stem cells. Our studies suggest a role for MLL in contributing to the epigenetic heterogeneity between tumor-initiating and non-tumor-initiating cells in glioblastoma.
View Publication
产品类型:
产品号#:
05750
产品名:
NeuroCult™ NS-A 基础培养基(人)
文献
Singh A et al. (MAY 2013)
Nature Methods 10 5 438--444
Adhesion strength-based, label-free isolation of human pluripotent stem cells
We demonstrate substantial differences in 'adhesive signature' between human pluripotent stem cells (hPSCs),partially reprogrammed cells,somatic cells and hPSC-derived differentiated progeny. We exploited these differential adhesion strengths to rapidly (over approximately 10 min) and efficiently isolate fully reprogrammed induced hPSCs (hiPSCs) as intact colonies from heterogeneous reprogramming cultures and from differentiated progeny using microfluidics. hiPSCs were isolated label free,enriched to 95%-99% purity with textgreater80% survival,and had normal transcriptional profiles,differentiation potential and karyotypes. We also applied this strategy to isolate hPSCs (hiPSCs and human embryonic stem cells) during routine culture and show that it may be extended to isolate hPSC-derived lineage-specific stem cells or differentiated cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Kim G-H et al. ( 2014)
Angewandte Chemie (International ed. in English) 53 35 9271--9274
Imidazole-based small molecules that promote neurogenesis in pluripotent cells.
Reported herein are two imidazole-based small molecules,termed neurodazine (Nz) and neurodazole (Nzl),which induce neuronal differentiation of pluripotent P19 cells. Their ability to induce neurogenesis of P19 cells is comparable to that of retinoic acid. However,Nz and Nzl were found to be more selective neurogenesis inducers than retinoic acid owing to their unique ability to suppress astrocyte differentiation of P19 cells. Our results also show that Nz and Nzl promote production of physiologically active neurons because P19-cell-derived neurons induced by these substances have functional glutamate responsiveness. The present study suggests that Nz and Nzl could serve as important chemical tools to induce formation of specific populations of neuronal cell types from pluripotent cells.
View Publication
产品类型:
产品号#:
73292
产品名:
Neurodazine
文献
Viale A et al. (OCT 2014)
Nature 514 7524 628--632
Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function.
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries,with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC,but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still,despite marked tumour shrinkage,the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D),herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function,autophagy and lysosome activity,as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly,surviving cells show high sensitivity to oxidative phosphorylation inhibitors,which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.
View Publication