Halim L et al. (JUL 2017)
Cell reports 20 3 757--770
An Atlas of Human Regulatory T Helper-like Cells Reveals Features of Th2-like Tregs that Support a Tumorigenic Environment.
Regulatory T cells (Tregs) play a pivotal role in maintaining immunological tolerance,but they can also play a detrimental role by preventing antitumor responses. Here,we characterized T helper (Th)-like Treg subsets to further delineate their biological function and tissue distribution,focusing on their possible contribution to disease states. RNA sequencing and functional assays revealed that Th2-like Tregs displayed higher viability and autocrine interleukin-2 (IL-2)-mediated activation than other subsets. Th2-like Tregs were preferentially found in tissues rather than circulation and exhibited the highest migratory capacity toward chemokines enriched at tumor sites. These cellular responses led us to hypothesize that this subset could play a role in maintaining a tumorigenic environment. Concurrently,Th2-like Tregs were enriched specifically in malignant tissues from patients with melanoma and colorectal cancer compared to healthy tissue. Overall,our results suggest that Th2-like Tregs may contribute to a tumorigenic environment due to their increased cell survival,higher migratory capacity,and selective T-effector suppressive ability.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
(Jul 2024)
iScience 27 8
Substrate stiffness alters layer architecture and biophysics of human induced pluripotent stem cells to modulate their differentiation potential
SummaryLineage-specific differentiation of human induced pluripotent stem cells (hiPSCs) relies on complex interactions between biochemical and physical cues. Here we investigated the ability of hiPSCs to undergo lineage commitment in response to inductive signals and assessed how this competence is modulated by substrate stiffness. We showed that Activin A-induced hiPSC differentiation into mesendoderm and its derivative,definitive endoderm,is enhanced on gel-based substrates softer than glass. This correlated with changes in tight junction formation and extensive cytoskeletal remodeling. Further,live imaging and biophysical studies suggested changes in cell motility and interfacial contacts underlie hiPSC layer reshaping on soft substrates. Finally,we repurposed an ultra-soft silicone gel,which may provide a suitable substrate for culturing hiPSCs at physiological stiffnesses. Our results provide mechanistic insight into how epithelial mechanics dictate the hiPSC response to chemical signals and provide a tool for their efficient differentiation in emerging stem cell therapies. Graphical abstract Highlights•Tuning of substrate stiffness can enhance mesendoderm/endoderm hiPSC differentiation•Altered tight junction formation drives increased differentiation on soft substrates•Changes in cell motility and interfacial contacts underlie hiPSC layer remodeling Mechanobiology; Stem cells research; Biophysics
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
Y. Suzdaltseva et al. (Nov 2024)
Cells 13 21
Initial WNT/β-Catenin or BMP Activation Modulates Inflammatory Response of Mesodermal Progenitors Derived from Human Induced Pluripotent Stem Cells
Wound healing in adults largely depends on the functional state of multipotent mesenchymal stromal cells (MSCs). Human fetal tissues at the early stages of development are known to heal quickly with a full-quality restoration of the original structure. The differences in the molecular mechanisms that determine the functional activity of mesodermal cells in fetuses and adults remain virtually unknown. Using two independent human induced pluripotent stem cell (iPSC) lines,we examined the effects of the initial WNT and BMP activation on the differentiation of iPSCs via mesodermal progenitors into MSCs and highlighted the functions of these cells that are altered by the proinflammatory microenvironment. The WNT-induced mesoderm commitment of the iPSCs enhanced the expression of paraxial mesoderm (PM)-specific markers,while the BMP4-primed iPSCs exhibited increased levels of lateral mesoderm (LM)-specific genes. The inflammatory status and migration rate of the isogenic iPSC-derived mesoderm cells were assessed via gene expression analysis and scratch assay under the receptor-dependent activation of the proinflammatory IFN-γ or TNF-α signaling pathway. Reduced IDO1 and ICAM1 expression levels were detected in the WNT- and BMP-induced MSC progenitors compared to the isogenic MSCs in response to stimulation with IFN-γ and TNF-α. The WNT- and BMP-induced MSC progenitors exhibited a higher migration rate than isogenic MSCs upon IFN-γ exposure. The established isogenic cellular model will provide new opportunities to elucidate the mechanisms of regeneration and novel therapeutics for wound healing.
View Publication
产品类型:
产品号#:
100-0483
100-0484
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
Imbeault M et al. (JAN 2009)
Retrovirology 6 5
Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4+ T cells.
BACKGROUND: Infection with HIV-1 has been shown to alter expression of a large array of host cell genes. However,previous studies aimed at investigating the putative HIV-1-induced modulation of host gene expression have been mostly performed in established human cell lines. To better approximate natural conditions,we monitored gene expression changes in a cell population highly enriched in human primary CD4+ T lymphocytes exposed to HIV-1 using commercial oligonucleotide microarrays from Affymetrix. RESULTS: We report here that HIV-1 influences expression of genes related to many important biological processes such as DNA repair,cellular cycle,RNA metabolism and apoptosis. Notably,expression of the p53 tumor suppressor and genes involved in p53 homeostasis such as GADD34 were up-regulated by HIV-1 at the mRNA level. This observation is distinct from the previously reported p53 phosphorylation and stabilization at the protein level,which precedes HIV-1-induced apoptosis. We present evidence that the HIV-1-mediated increase in p53 gene expression is associated with virus-mediated induction of type-I interferon (i.e. IFN-alpha and IFN-beta). CONCLUSION: These observations have important implications for our understanding of HIV-1 pathogenesis,particularly in respect to the virus-induced depletion of CD4+ T cells.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
Wakimoto H et al. (APR 2009)
Cancer research 69 8 3472--81
Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors.
Glioblastoma,the most malignant type of primary brain tumor,is one of the solid cancers where cancer stem cells have been isolated,and studies have suggested resistance of those cells to chemotherapy and radiotherapy. Here,we report the establishment of CSC-enriched cultures derived from human glioblastoma specimens. They grew as neurospheres in serum-free medium with epidermal growth factor and fibroblast growth factor 2,varied in the level of CD133 expression and very efficiently formed highly invasive and/or vascular tumors upon intracerebral implantation into immunodeficient mice. As a novel therapeutic strategy for glioblastoma-derived cancer stem-like cells (GBM-SC),we have tested oncolytic herpes simplex virus (oHSV) vectors. We show that although ICP6 (UL39)-deleted mutants kill GBM-SCs as efficiently as wild-type HSV,the deletion of gamma34.5 significantly attenuated the vectors due to poor replication. However,this was significantly reversed by the additional deletion of alpha47. Infection with oHSV G47Delta (ICP6(-),gamma34.5(-),alpha47(-)) not only killed GBM-SCs but also inhibited their self-renewal as evidenced by the inability of viable cells to form secondary tumor spheres. Importantly,despite the highly invasive nature of the intracerebral tumors generated by GBM-SCs,intratumoral injection of G47Delta significantly prolonged survival. These results for the first time show the efficacy of oHSV against human GBM-SCs,and correlate this cytotoxic property with specific oHSV mutations. This is important for designing new oHSV vectors and clinical trials. Moreover,the new glioma models described in this study provide powerful tools for testing experimental therapeutics and studying invasion and angiogenesis.
View Publication
产品类型:
产品号#:
05707
产品名:
NeuroCult™化学解离试剂盒(小鼠)
Griffin DO et al. (JAN 2011)
The Journal of experimental medicine 208 1 67--80
Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70-.
B1 cells differ in many ways from conventional B cells,most prominently in the production of natural immunoglobulin,which is vitally important for protection against pathogens. B1 cells have also been implicated in the pathogenesis of autoimmune dyscrasias and malignant diseases. It has been impossible to accurately study B1 cells during health and illness because the nature of human B1 cells has not been successfully defined. This has produced controversy regarding the existence of human B1 cells. Here,we determined the phenotype of human B1 cells by testing sort-purified B cell fractions for three fundamental B1 cell functions based on mouse studies: spontaneous IgM secretion,efficient T cell stimulation,and tonic intracellular signaling. We found that a small population of CD20(+)CD27(+)CD43(+) cells present in both umbilical cord and adult peripheral blood fulfilled these criteria and expressed a skewed B cell receptor repertoire. These B cells express little or no surface CD69 and CD70,both of which are markedly up-regulated after activation of CD20(+)CD27(-)CD43(-) (naive) and CD20(+)CD27(+)CD43(-) (memory) B cells. This work identifies human B1 cells as CD20(+)CD27(+)CD43(+)CD70(-). We determined that the proportion of B1 cells declines with age,which may contribute to disease susceptibility. Identification of human B1 cells provides a foundation for future studies on the nature and role of these cells in human disease.
View Publication
产品类型:
产品号#:
18054
18054RF
19155
19155RF
产品名:
Rodin S et al. (OCT 2014)
Nature protocols 9 10 2354--68
Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions.
A robust method for culturing human pluripotent stem (hPS) cells under chemically defined and xeno-free conditions is an important tool for stem cell research and for the development of regenerative medicine. Here,we describe a protocol for monolayer culturing of Oct-4-positive hPS cells on a specific laminin-521 (LN-521) isoform,under xeno-free and chemically defined conditions. The cells are dispersed into single-cell suspension and then plated on LN-521 isoform at densities higher than 5,000 cells per cm²,where they attach,migrate and survive by forming small monolayer cell groups. The cells avidly divide and expand horizontally until the entire dish is covered by a confluent monolayer. LN-521,in combination with E-cadherin,allows cloning of individual hPS cells in separate wells of 96-well plates without the presence of rho-associated protein kinase (ROCK) inhibitors or any other inhibitors of anoikis. Characterization of cells maintained for several months in culture reveals pluripotency with a minimal degree of genetic abnormalities.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07174
85850
85857
85870
85875
77003
77004
产品名:
mTeSR™1
mTeSR™1
CellAdhere™ Laminin-521
Lee J et al. (AUG 2015)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 29 8 3399--3410
Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells.
Regeneration of human cartilage is inherently inefficient; an abundant autologous source,such as human induced pluripotent stem cells (hiPSCs),is therefore attractive for engineering cartilage. We report a growth factor-based protocol for differentiating hiPSCs into articular-like chondrocytes (hiChondrocytes) within 2 weeks,with an overall efficiency textgreater90%. The hiChondrocytes are stable and comparable to adult articular chondrocytes in global gene expression,extracellular matrix production,and ability to generate cartilage tissue in vitro and in immune-deficient mice. Molecular characterization identified an early SRY (sex-determining region Y) box (Sox)9(low) cluster of differentiation (CD)44(low)CD140(low) prechondrogenic population during hiPSC differentiation. In addition,2 distinct Sox9-regulated gene networks were identified in the Sox9(low) and Sox9(high) populations providing novel molecular insights into chondrogenic fate commitment and differentiation. Our findings present a favorable method for generating hiPSC-derived articular-like chondrocytes. The hiChondrocytes are an attractive cell source for cartilage engineering because of their abundance,autologous nature,and potential to generate articular-like cartilage rather than fibrocartilage. In addition,hiChondrocytes can be excellent tools for modeling human musculoskeletal diseases in a dish and for rapid drug screening.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Minami I et al. (NOV 2012)
Cell reports 2 5 1448--60
A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions.
Human pluripotent stem cells (hPSCs),including embryonic stem cells and induced pluripotent stem cells,are potentially useful in regenerative therapies for heart disease. For medical applications,clinical-grade cardiac cells must be produced from hPSCs in a defined,cost-effective manner. Cell-based screening led to the discovery of KY02111,a small molecule that promotes differentiation of hPSCs to cardiomyocytes. Although the direct target of KY02111 remains unknown,results of the present study suggest that KY02111 promotes differentiation by inhibiting WNT signaling in hPSCs but in a manner that is distinct from that of previously studied WNT inhibitors. Combined use of KY02111 and WNT signaling modulators produced robust cardiac differentiation of hPSCs in a xeno-free,defined medium,devoid of serum and any kind of recombinant cytokines and hormones,such as BMP4,Activin A,or insulin. The methodology has potential as a means for the practical production of human cardiomyocytes for regeneration therapies.
View Publication
产品类型:
产品号#:
72122
72124
72582
产品名:
IWP-2
IWP-2
KY02111
Maldonado M et al. (AUG 2016)
Stem cell research 17 2 222--227
ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation.
Robust control of human induced pluripotent stem cell (hIPSC) differentiation is essential to realize its patient-tailored therapeutic potential. Here,we demonstrate a novel application of Y-27632,a small molecule Rho-associated protein kinase (ROCK) inhibitor,to significantly influence the differentiation of hIPSCs in a lineage-specific manner. The application of Y-27632 to hIPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration and time-dependent manner. Such changes in cell and colony morphology were associated with decreased expression of E-cadherin,a cell-cell junctional protein,proportional to the increased exposure to Y-27632. Interestingly,gene and protein expression of pluripotency markers such as NANOG and OCT4 were not downregulated by an exposure to Y-27632 up to 36h. Simultaneously,epithelial-to-mesenchymal (EMT) transition markers were upregulated with an exposure to Y-27632. These EMT-like changes in the cells with longer exposure to Y-27632 resulted in a significant increase in the subsequent differentiation efficiency towards mesendodermal lineage. In contrast,an inhibitory effect was observed when cells were subjected to ectodermal differentiation after prolonged exposure to Y-27632. Collectively,these results present a novel method for priming hIPSCs to modulate their differentiation potential with a simple application of Y-27632.
View Publication