Nguyen HX et al. (AUG 2014)
Journal of Comparative Neurology 522 12 2767--2783
Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions
Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) can differentiate into many cell types and are important for regenerative medicine; however,further work is needed to reliably differentiate hESC and hiPSC into neural-restricted multipotent derivatives or specialized cell types under conditions that are free from animal products. Toward this goal,we tested the transition of hESC and hiPSC lines onto xeno-free (XF) / feeder-free conditions and evaluated XF substrate preference,pluripotency,and karyotype. Critically,XF transitioned H9 hESC,Shef4 hESC,and iPS6-9 retained pluripotency (Oct-4 and NANOG),proliferation (MKI67 and PCNA),and normal karyotype. Subsequently,XF transitioned hESC and hiPSC were induced with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to generate neuralized spheres containing primitive neural precursors,which could differentiate into astrocytes and neurons,but not oligoprogenitors. Further neuralization of spheres via LIF supplementation and attachment selection on CELLstart substrate generated adherent human neural stem cells (hNSC) with normal karyotype and high proliferation potential under XF conditions. Interestingly,adherent hNSC derived from H9,Shef4,and iPS6-9 differentiated into significant numbers of O4+ oligoprogenitors (∼20-30%) with robust proliferation; however,very few GalC+ cells were observed (∼2-4%),indicative of early oligodendrocytic lineage commitment. Overall,these data demonstrate the transition of multiple hESC and hiPSC lines onto XF substrate and media conditions,and a reproducible neuralization method that generated neural derivatives with multipotent cell fate potential and normal karyotype.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Woltjen K et al. (APR 2009)
Nature 458 7239 766--70
piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells.
Transgenic expression of just four defined transcription factors (c-Myc,Klf4,Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral,lentiviral,adenoviral and plasmid transfection to deliver reprogramming factor transgenes. Although the latter two methods are transient and minimize the potential for insertion mutagenesis,they are currently limited by diminished reprogramming efficiencies. piggyBac (PB) transposition is host-factor independent,and has recently been demonstrated to be functional in various human and mouse cell lines. The PB transposon/transposase system requires only the inverted terminal repeats flanking a transgene and transient expression of the transposase enzyme to catalyse insertion or excision events. Here we demonstrate successful and efficient reprogramming of murine and human embryonic fibroblasts using doxycycline-inducible transcription factors delivered by PB transposition. Stable iPS cells thus generated express characteristic pluripotency markers and succeed in a series of rigorous differentiation assays. By taking advantage of the natural propensity of the PB system for seamless excision,we show that the individual PB insertions can be removed from established iPS cell lines,providing an invaluable tool for discovery. In addition,we have demonstrated the traceless removal of reprogramming factors joined with viral 2A sequences delivered by a single transposon from murine iPS lines. We anticipate that the unique properties of this virus-independent simplification of iPS cell production will accelerate this field further towards full exploration of the reprogramming process and future cell-based therapies.
View Publication
产品类型:
产品号#:
产品名:
文献
Naka K et al. (FEB 2010)
Nature 463 7281 676--80
TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia.
Chronic myeloid leukaemia (CML) is caused by a defined genetic abnormality that generates BCR-ABL,a constitutively active tyrosine kinase. It is widely believed that BCR-ABL activates Akt signalling that suppresses the forkhead O transcription factors (FOXO),supporting the proliferation or inhibiting the apoptosis of CML cells. Although the use of the tyrosine kinase inhibitor imatinib is a breakthrough for CML therapy,imatinib does not deplete the leukaemia-initiating cells (LICs) that drive the recurrence of CML. Here,using a syngeneic transplantation system and a CML-like myeloproliferative disease mouse model,we show that Foxo3a has an essential role in the maintenance of CML LICs. We find that cells with nuclear localization of Foxo3a and decreased Akt phosphorylation are enriched in the LIC population. Serial transplantation of LICs generated from Foxo3a(+/+) and Foxo3a(-/-) mice shows that the ability of LICs to cause disease is significantly decreased by Foxo3a deficiency. Furthermore,we find that TGF-beta is a critical regulator of Akt activation in LICs and controls Foxo3a localization. A combination of TGF-beta inhibition,Foxo3a deficiency and imatinib treatment led to efficient depletion of CML in vivo. Furthermore,the treatment of human CML LICs with a TGF-beta inhibitor impaired their colony-forming ability in vitro. Our results demonstrate a critical role for the TGF-beta-FOXO pathway in the maintenance of LICs,and strengthen our understanding of the mechanisms that specifically maintain CML LICs in vivo.
View Publication
产品类型:
产品号#:
72592
产品名:
LY364947
文献
Bragina O et al. ( 2010)
Neuroscience letters 482 2 81--85
Smoothened agonist augments proliferation and survival of neural cells.
Sonic hedgehog signaling pathway is important in developmental processes like dorsoventral neural tube patterning,neural stem cell proliferation and neuronal and glial cell survival. Shh is also implicated in the regulation of the adult hippocampal neurogenesis. Recently,nonpeptidyl Smoothened activators of the Shh pathway have been identified. The aim of this study was to investigate the effects of chlorobenzothiophene-containing molecule,Smo agonist (SAG),which has been shown to activate Shh signaling pathway,in neurogenesis and neuronal survival in in vitro and in vivo models. Our in vitro experiments showed that SAG induces increased expression of Gli1 mRNA,transcriptional target and mediator of Shh signal. In vitro experiments also demonstrated that SAG in low-nanomolar concentrations induces proliferation of neuronal and glial precursors without affecting the differentiation pattern of newly produced cells. In contrast to Shh,SAG did not induce neurotoxicity in neuronal cultures. The SAG and Shh treatment also promoted the survival of newly generated neural cells in the dentate gyrus after their intracerebroventricular administration to adult rats. We propose that SAG and similar compounds represent attractive molecules to be developed for treatment of disorders where stimulation of the generation and survival of new neural cells would be beneficial.
View Publication
产品类型:
产品号#:
73412
73414
产品名:
SAG
SAG
文献
Cai J et al. (JAN 2004)
Journal of neurochemistry 88 1 212--26
Membrane properties of rat embryonic multipotent neural stem cells.
We have characterized several potential stem cell markers and defined the membrane properties of rat fetal (E10.5) neural stem cells (NSC) by immunocytochemistry,electrophysiology and microarray analysis. Immunocytochemical analysis demonstrates specificity of expression of Sox1,ABCG2/Bcrp1,and shows that nucleostemin labels both progenitor and stem cell populations. NSCs,like hematopoietic stem cells,express high levels of aldehyde dehydrogenase (ALDH) as assessed by Aldefluor labeling. Microarray analysis of 96 transporters and channels showed that Glucose transporter 1 (Glut1/Slc2a1) expression is unique to fetal NSCs or other differentiated cells. Electrophysiological examination showed that fetal NSCs respond to acetylcholine and its agonists,such as nicotine and muscarine. NSCs express low levels of tetrodotoxin (TTX) sensitive and insensitive sodium channels and calcium channels while expressing at least three kinds of potassium channels. We find that gap junction communication is mediated by connexin (Cx)43 and Cx45,and is essential for NSC survival and proliferation. Overall,our results show that fetal NSCs exhibit a unique signature that can be used to determine their location and assess their ability to respond to their environment.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Juopperi TA et al. (FEB 2007)
Experimental hematology 35 2 335--41
Isolation of bone marrow-derived stem cells using density-gradient separation.
OBJECTIVE: Our laboratory has established two unique methods to isolate murine hematopoietic stem cells on the basis of functional characteristics such as the ability of stem cells to home to bone marrow and aldehyde dehydrogenase (ALDH) activity. An essential component of both protocols is the separation of whole bone marrow into small-sized cells by counter-flow elutriation. We sought to provide the scientific community with an alternate approach to acquire our stem cells by replacing elutriation with the use of density-gradient centrifugation. METHODS: The elutriated fraction 25 population was characterized based on density using a discontinuous gradient. The long-term reconstituting potential of whole bone marrow cells collected at each density interface was determined by subjecting the fractions to the two-day homing protocol,transplanting them into lethally irradiated recipient mice,and assessing peripheral blood chimerism. We also investigated the ability of high-density bone marrow cells isolated in conjunction with the ALDH protocol to repopulate the hematopoietic system of myeloablated recipients. RESULTS: Bone marrow cells collected at the high-density interface of 1.081/1.087 g/mL (fraction 3) had the capacity for homing to marrow and the ability to provide long-term hematopoietic reconstitution. Fraction three lineage-depleted ALDH-bright cells could also engraft and provide long-term hematopoiesis at limiting dilutions. CONCLUSIONS: Density-gradient centrifugation can be used in conjunction with either of our stem cell isolation protocols to obtain cells with long-term reconstitution ability. We anticipate that this strategy will encourage and enable investigators to study the biology of HSCs isolated using functional characteristics.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Carmona G et al. (MAR 2008)
Blood 111 5 2640--6
Activation of Epac stimulates integrin-dependent homing of progenitor cells.
Cell therapy is a novel promising option for treatment of ischemic diseases. Administered endothelial progenitor cells (EPCs) are recruited to ischemic regions and improve neovascularization. However,the number of cells that home to ischemic tissues is restricted. The GTPase Rap1 plays an important role in the regulation of adhesion and chemotaxis. We investigated whether pharmacologic activation of Epac1,a nucleotide exchange protein for Rap1,which is directly activated by cAMP,can improve the adhesive and migratory capacity of distinct progenitor cell populations. Stimulation of Epac by a cAMP-analog increased Rap1 activity and stimulated the adhesion of human EPCs,CD34(+) hematopoietic progenitor cells,and mesenchymal stem cells (MSCs). Specifically,short-term stimulation with a specific Epac activator increased the beta2-integrin-dependent adhesion of EPCs to endothelial cell monolayers,and of EPC and CD34(+) cells to ICAM-1. Furthermore,the Epac activator enhanced the beta1-integrin-dependent adhesion of EPCs and MSCs to the matrix protein fibronectin. In addition,Epac1 activation induced the beta1- and beta2-integrin-dependent migration of EPCs on fibronectin and fibrinogen. Interestingly,activation of Epac rapidly increased lateral mobility of beta1- and beta2-integrins,thereby inducing integrin polarization,and stimulated beta1-integrin affinity,whereas the beta2-integrin affinity was not increased. Furthermore,prestimulation of EPCs with the Epac activator increased homing to ischemic muscles and neovascularization-promoting capacity of intravenously injected EPCs in the model of hind limb ischemia. These data demonstrate that activation of Epac1 increases integrin activity and integrin-dependent homing functions of progenitor cells and enhances their in vivo therapeutic potential. These results may provide a platform for the development of novel therapeutic approaches to improve progenitor cell homing.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC 基础培养基(人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
文献
Gore A et al. (MAR 2011)
Nature 471 7336 63--7
Somatic coding mutations in human induced pluripotent stem cells.
Defined transcription factors can induce epigenetic reprogramming of adult mammalian cells into induced pluripotent stem cells. Although DNA factors are integrated during some reprogramming methods,it is unknown whether the genome remains unchanged at the single nucleotide level. Here we show that 22 human induced pluripotent stem (hiPS) cell lines reprogrammed using five different methods each contained an average of five protein-coding point mutations in the regions sampled (an estimated six protein-coding point mutations per exome). The majority of these mutations were non-synonymous,nonsense or splice variants,and were enriched in genes mutated or having causative effects in cancers. At least half of these reprogramming-associated mutations pre-existed in fibroblast progenitors at low frequencies,whereas the rest occurred during or after reprogramming. Thus,hiPS cells acquire genetic modifications in addition to epigenetic modifications. Extensive genetic screening should become a standard procedure to ensure hiPS cell safety before clinical use.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Aanei CM et al. (NOV 2011)
Experimental cell research 317 18 2616--29
Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells.
Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular microenvironment is essential to maintain 'stemness'. In cancer biology,focal adhesion (FA) proteins are involved in survival signal transduction in a wide variety of human tumours. To define the role of FA proteins in the haematopoietic microenvironment of myelodysplastic syndromes (MDS),CD73-positive mesenchymal stromal cells (MSCs) were immunostained for paxillin,pFAK [Y(397)],and HSP90α/β and p130CAS,and analysed for reactivity,intensity and cellular localisation. Immunofluorescence microscopy allowed us to identify qualitative and quantitative differences,and subcellular localisation analysis revealed that in pathological MSCs,paxillin,pFAK [Y(397)],and HSP90α/β formed nuclear molecular complexes. Increased expression of paxillin,pFAK [Y(397)],and HSP90α/β and enhanced nuclear co-localisation of these proteins correlated with a consistent proliferative advantage in MSCs from patients with refractory anaemia with excess blasts (RAEB) and negatively impacted clonogenicity of HPCs. These results suggest that signalling via FA proteins could be implicated in HPC-MSC interactions. Further,because FAK is an HSP90α/β client protein,these results suggest the utility of HSP90α/β inhibition as a target for adjuvant therapy for myelodysplasia.
View Publication
产品类型:
产品号#:
05401
05402
05411
05426
产品名:
MesenCult™ MSC 基础培养基(人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
无动物成分的细胞解离试剂盒
文献
Guan X et al. (MAY 2012)
Stem Cell Research 8 3 410--5
Derivation of human embryonic stem cells with NEMO deficiency.
Deficiency of the nuclear factor-kappa-B essential modulator (NEMO) is a rare X-linked disorder that presents in boys as hypohydrotic ectodermal dysplasia with immunodeficiency due to defective nuclear factor-κB activation. Here we report on the generation of 2 human embryonic stem cell lines from discarded in vitro fertilization (IVF) embryos ascertained via preimplantation genetic diagnosis. We have derived two human embryonic stem cell lines that carry a T458G hypomorphic mutation in exon 4 of the NEMO (or IKBKG) gene. One of the lines is diploid male; the other is diploid female but has clonally inactivated the X-chromosome that harbors the wild-type IKBKG gene. We show that both lines are pluripotent,have the capacity to differentiate into hematopoietic progenitors,and have defective inhibitor of nuclear factor kappa-B kinase activity. These NEMO deficiency hES cell lines provide an unlimited source for differentiated cell types and may serve as a unique tool to study NEMO deficiency and potentially lead to the development of new therapies for this disease.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Richard V et al. (SEP 2013)
Cancer letters 338 2 300--316
Multiple drug resistant, tumorigenic stem-like cells in oral cancer.
An in vitro cell line model was established to exemplify tumor stem cell concept in oral cancer. We were able to identify CD147 expressing fractions in SCC172 OSCC cell line with differing Hoechst dye efflux activity and DNA content. In vivo tumorigenic assay revealed three fractions enriched with stem-like cells capable of undergoing mesenchymal transition and a non-tumorigenic fraction. The regeneration potential and transition of one fraction to other imitated the phenotypic switch and functional disparities evidenced during oral tumor progression. Knowledge of these additional stem-like subsets will improve understanding of stem cell based oral epithelial tumor progression from normal to malignant lesions.
View Publication