Varga E et al. (MAY 2017)
Stem cell research 21 19--22
Establishment of an induced pluripotent stem cell (iPSC) line from a 9-year old male with autism spectrum disorder (ASD).
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically characterized patient with autism spectrum disorder (ASD). The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus delivery system. The pluripotency of transgene-free iPSCs was verified by immunocytochemistry for pluripotency markers and by spontaneous in vitro differentiation towards the 3 germ layers. Furthermore,the iPSC line showed normal karyotype. Our model might offer a good platform to study the pathomechanism of ASD,also for drug testing,early biomarker discovery and gene therapy studies.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lukovic D et al. (MAY 2017)
Stem cell research 21 23--25
Generation of a human iPSC line from a patient with retinitis pigmentosa caused by mutation in PRPF8 gene.
The human iPSC cell line,RP2-FiPS4F1 (RCPFi001-A),derived from dermal fibroblasts from the patient with retinitis pigmentosa caused by the mutation of the gene PRPF8,was generated by non-integrative reprogramming technology using OCT3/4,SOX2,CMYC and KLF4 reprogramming factors.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Zhang S et al. (MAR 2017)
Stem cell research 19 49--51
Generation of a human induced pluripotent stem cell (iPSC) line from a 64year old male patient with multiple schwannoma.
Peripheral blood was collected from a clinically diagnosed 64-year old male multiple schwannoma patient. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers,and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for further pathological studies of multiple schwannoma.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
A. Wilmes et al. ( 2017)
Toxicology in Vitro
Towards optimisation of induced pluripotent cell culture: Extracellular acidification results in growth arrest of iPSC prior to nutrient exhaustion
Human induced pluripotent stem cells (iPSC) have the potential to radically reduce the number of animals used in both toxicological science and disease elucidation. One initial obstacle culturing iPSC is that they require daily medium exchange. This study attempts to clarify why and propose some practical solutions. Two iPSC lineages were fed at different intervals in a full growth area (FGA) or a restricted growth area (RGA). The FGA consisted of a well coated with Matrigel™ and the RGA consisted of a coated coverslip placed in a well. Glucose,lactate,extracellular pH and cell cycle phases were quantified. Without daily feeding,FGA cultured iPSC had significantly reduced growth rates by day 2 and began to die by day 3. In contrast,RGA cultured cells grew to confluence over 3 days. Surprisingly,glucose was not exhausted under any condition. However,extracellular pH reached 6.8 after 72 h in FGA cultures. Artificially reducing medium pH to 6.8 also inhibited glycolysis and initiated an increase in G0/G1 phase of the cell cycle,while adding an additional 10 mM bicarbonate to the medium increased glycolysis rates. This study demonstrates that iPSC are highly sensitive to extracellular acidification,a likely limiting factor in maintenance of proliferative and pluripotent status. Culturing iPSC in RGA prevents rapid extracellular acidification,while still maintaining pluripotency and allowing longer feeding cycles.
产品类型:
产品号#:
产品名:
文献
Zhang S et al. (MAR 2017)
Stem cell research 19 34--36
Characterization of human induced pluripotent stem cell (iPSC) line from a 72year old male patient with later onset Alzheimer's disease.
Peripheral blood was collected from a clinically diagnosed 72-year old male patient with later onset Alzheimer's disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers,and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for studying the pathological mechanism of Alzheimer's disease.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ma D et al. (JAN 2017)
Stem cell research 18 45--47
Reprogramming of a human induced pluripotent stem cell (iPSC) line from a Parkinson's disease patient with a R1628P variant in the LRRK2 gene.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 59-year old male Parkinson's disease (PD) patient with R1628P variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model will provide a good resource for further pathophysiological studies of PD.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Hunihan L et al. (APR 2017)
Stem cell research 20 67--69
Generation of a clonal induced pluripotent stem cell (iPSC) line expressing the mutant MECP2 allele from a Rett Syndrome patient fibroblast line.
Human fibroblast cells collected from a 3-year old,female Rett Syndrome patient with a 32bp deletion in the X-linked MECP2 gene were obtained from the Coriell Institute. Fibroblasts were reprogrammed to iPSC cells using a Sendai-virus delivery system expressing human KOSM transcription factors. Cell-line pluripotency was demonstrated by gene expression,immunocytochemistry,in-vitro differentiation trilineage capacity and was of normal karyotype. Interestingly,subsequent clones retained the epigenetic memory of the parent fibroblasts allowing for the segregation of wild-type and mutant expressing clones. This MECP2 mutant expressing clone may serve as a model for investigating MECP2 reactivation in Rett's Syndrome.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Varga E et al. (OCT 2016)
Stem cell research 17 3 514--516
Generation of human induced pluripotent stem cell (iPSC) line from an unaffected female carrier of Mucopolysaccharidosis type II (MPS II) disorder.
Peripheral blood was collected from a 39-year-old unaffected female carrier of an X-linked recessive mutation of Iduronate 2-sulfatase gene (NM000202.7(IDS):c.85CtextgreaterT) causing MPS II (OMIM 309900). Peripheral blood mononuclear cells (PBMCs) were reprogrammed by lentiviral delivery of a self-silencing hOKSM polycistronic vector. The pluripotency of iPSC line was confirmed by the expression of pluripotency-associated markers and in vitro spontaneous differentiation towards the 3 germ layers. The iPSC showed normal karyotype. The line offers a good platform to study MPS II pathophysiology,for drug testing,early biomarker discovery and gene therapy studies.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Varga E et al. (OCT 2016)
Stem cell research 17 3 482--484
Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 1-year-old male with pathogenic IDS mutation.
Peripheral blood was collected from a 1-year-old male patient with an X-linked recessive mutation of Iduronate 2-sulfatase (IDS) gene (NM000202.7(IDS):c.85CtextgreaterT) causing MPS II (OMIM 309900). Peripheral blood mononuclear cells (PBMCs) were reprogrammed by lentiviral delivery of a self-silencing hOKSM polycistronic vector. The pluripotency of the iPSC line was confirmed by the expression of pluripotency-associated markers and in vitro spontaneous differentiation towards the 3 germ layers. The iPSC line showed normal karyotype. The cell line offers a good platform to study MPS II pathophysiology,for drug testing,early biomarker discovery and gene therapy studies.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ma D et al. (JAN 2017)
Stem cell research 18 51--53
Development of a human induced pluripotent stem cell (iPSC) line from a Parkinson's disease patient carrying the N551K variant in LRRK2 gene.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 64-year old male Parkinson's disease (PD) patient with N551K variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model can complement in vivo PD models for pathophysiological studies and drug screening.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Varga E et al. (OCT 2016)
Stem cell research 17 3 531--533
Establishment of EHMT1 mutant induced pluripotent stem cell (iPSC) line from a 11-year-old Kleefstra syndrome (KS) patient with autism and normal intellectual performance.
Peripheral blood was collected from a clinically characterized female Kleefstra syndrome patient with a heterozygous,de novo,premature termination codon (PTC) mutation (NM024757.4(EHMT1):c.3413GtextgreaterA; p.Trp1138Ter). Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the human OSKM transcription factors using the Sendai-virus (SeV) delivery system. The pluripotency of transgene-free iPSC line was verified by the expression of pluripotency-associated markers and by in vitro spontaneous differentiation towards the 3 germ layers. Furthermore,the iPSC line showed normal karyotype. Our model might offer a good platform to study the pathomechanism of Kleefstra syndrome,also for drug testing,early biomarker discovery and gene therapy studies.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Galera-Monge T et al. (MAY 2016)
Stem Cell Research 16 3 673--676
Generation of a human iPSC line from a patient with an optic atrophy ‘plus' phenotype due to a mutation in the OPA1 gene
Human iPSC line Oex2054SV.4 was generated from fibroblasts of a patient with an optic atrophy 'plus' phenotype associated with a heterozygous mutation in the OPA1 gene. Reprogramming factors OCT3/4,SOX2,CMYC and KLF4 were delivered using a non-integrative methodology that involves the use of Sendai virus.
View Publication