Inflammatory cytokines,particularly interferon-γ (IFN-γ),are markedly elevated in the peripheral blood of patients with immune checkpoint inhibitor-induced myocarditis (ICI-M). Endomyocardial biopsies from these patients also show GBP-associated inflammasome overexpression. While both factors are implicated in ICI-M pathophysiology,their interplay and cellular targets remain poorly characterized. Our aim was to elucidate how ICI-M-associated cytokines affect the viability and inflammatory responses of endothelial cells (ECs) and cardiomyocytes (CMs) using human induced pluripotent stem cell (hiPSC)-derived models. ECs and CMs were differentiated from the same hiPSC line derived from a healthy donor. Cells were exposed either to IFN-γ alone or to an inflammatory cytokine cocktail (CCL5,GZMB,IL-1β,IL-2,IL-6,IFN-γ,TNF-α). We assessed large-scale transcriptomic changes via microarray and evaluated inflammatory,apoptotic,and cell death pathways at cellular and molecular levels. hiPSC-ECs were highly sensitive to cytokine exposure,displaying significant mortality and marked transcriptomic changes in immunity- and inflammation-related pathways. In contrast,hiPSC-CM showed limited transcriptional changes and reduced susceptibility to cytokine-induced death. In both cell types,cytokine treatment upregulated key components of the inflammasome pathway,including regulators (GBP5,GBP6,P2X7,NLRC5),a core component (AIM2),and the effector GSDMD. Increased GBP5 expression and CASP-1 cleavage mirrored the findings found elsewhere in endomyocardial biopsies from ICI-M patients. This hiPSC-based model reveals a distinct cellular sensitivity to ICI-M-related inflammation,with endothelial cells showing heightened vulnerability. These results reposition endothelial dysfunction,rather than cardiomyocyte injury alone,as a central mechanism in ICI-induced myocarditis. Modulating endothelial inflammasome activation,particularly via AIM2 inhibition,could offer a novel strategy to mitigate cardiac toxicity while preserving antitumor efficacy.
View Publication