Hantaviruses are zoonotically transmitted from rodents to humans through the respiratory route,with no currently approved antivirals or widely available vaccines. The recent discovery of interhuman-transmitted Andes virus (ANDV) necessitates the systematic identification of cell tropism,infective potential,and potent therapeutic agents. We utilized human primary lung endothelial cells,various pluripotent stem cell-derived heart and brain cell types,and established human lung organoid models to evaluate the tropisms of Old World Hantaan (HTNV) and New World ANDV and Sin Nombre (SNV) viruses. ANDV exhibited broad tropism for all cell types assessed. SNV readily infected pulmonary endothelial cells,while HTNV robustly amplified in endothelial cells,cardiomyocytes,and astrocytes. We also provide the first evidence of hantaviral infection in human 3D distal lung organoids,which effectively modeled these differential tropisms. ANDV infection transcriptionally promoted cell injury and inflammatory responses,and downregulated lipid metabolic pathways in lung epithelial cells. Evaluation of selected drug candidates and pharmacotranscriptomics revealed that the host-directed small molecule compound urolithin B inhibited ANDV infection and restored cellular metabolism with minimal changes in host transcription. Given the scarcity of academic BSL-4 facilities that enable in vivo hantaviral studies,this investigation presents advanced human cell-based model systems that closely recapitulate host cell tropism and responses to infection,thereby providing critical platforms to evaluate potential antiviral drug candidates. Author summaryHantaviruses are fatal human pathogens that cause hemorrhagic fevers and are classified into either Old World or New World groups. Though most hantaviruses utilize zoonotic transmission,the New World Andes virus (ANDV) is unique in its ability to spread between humans. This distinct transmission mode underscores the need to investigate its cell tropism,pathogenicity,and therapeutic targets. Thus,we performed a systems-level comparison of the Old World Hantaan virus (HTNV) and New World hantaviruses,ANDV and Sin Nombre virus (SNV),using human lung,heart,and brain cell models,alongside lipidomic and transcriptomic profiling. We observed that ANDV exhibits broad tropism,infecting all tested cell types,including lung epithelial cells. HTNV replicated in lung endothelial,heart,and brain cells,whereas SNV replication was largely confined to lung endothelial cells. Notably,ANDV infection induced stronger host transcriptional changes,promoted cell injury and inflammatory responses,and suppressed lipid metabolic pathways in lung epithelial cells. Further drug testing and pharmacotranscriptomic analysis identified effective inhibitors of ANDV infection,including urolithin B,that restored cellular metabolism with minimal transcriptional disruption. This study provides a comparative framework for understanding hantavirus cell tropism and host responses and highlights potential antiviral candidates for treating these severe viral infections.
View Publication