BackgroundChronic ischemic limb disease often leads to amputation,which remains a significant clinical problem. Smooth-muscle cells (SMCs) are crucially involved in the development and progression of many cardiovascular diseases,but studies with primary human SMCs have been limited by a lack of availability. Here,we evaluated the efficiency of two novel protocols for differentiating human induced-pluripotent stem cells (hiPSCs) into SMCs and assessed their potency for the treatment of ischemic limb disease.MethodshiPSCs were differentiated into SMCs via a conventional two-dimensional (2D) protocol that was conducted entirely with cell monolayers,or via two protocols that consisted of an initial five-day three-dimensional (3D) spheroid phase followed by a six-day 2D monolayer phase (3D?+?2D differentiation). The 3D phases were conducted in shaker flasks on an orbital shaker (the 3D?+?2D shaker protocol) or in a PBS bioreactor (the 3D?+?2D bioreactor protocol). Differentiation efficiency was evaluated via the expression of SMC markers (smooth-muscle actin [SMA],smooth muscle protein 22 [SM22],and Calponin-1),and the biological activity of the differentiated hiPSC-SMCs was evaluated via in-vitro assessments of migration (scratch assay),contraction in response to the treatment with a prostaglandin H2 analog (U46619),and tube formation on Geltrex,as well as in-vivo measurements of perfusion (fluorescence angiography) and vessel density in the limbs of mice that were treated with hiPSC-SMCs after experimentally induced hind-limb ischemia (HLI).ResultsBoth 3D?+?2D protocols yielded?>?5.6?×?107 hiPSC-SMCs/differentiation,which was?~?nine-fold more than that produced via 2D differentiation,and flow cytometry analyses confirmed that?>?98% of the 3D?+?2D-differentiated hiPSC-SMCs expressed SMA,?>?81% expressed SM22,and?>?89% expressed Calponin-1. hiPSC-SMCs obtained via the 3D?+?2D shaker protocol also displayed typical SMC-like migratory,contraction,and tube-formation activity in-vitro and significantly improved measurements of perfusion,vessel density,and SMA-positive arterial density in the ischemic limb of mouse HLI model.ConclusionsOur dynamic 3D?+?2D protocols produced an exceptionally high yield of hiPSC-SMCs. Transplantation of these hiPSC-SMCs results in significantly improved recovery of ischemic limb after ischemic injury in mice.
View Publication