Cerebral organoids offer significant potential for neuroscience research as complex in vitro models that mimic human brain development. However,challenges related to their quality and reproducibility hinder their reliability. Discrepancies in morphology,size,cellular composition,and cytoarchitectural organization limit their applications,particularly in disease modeling,drug screening,and neurotoxicity testing. Critically,current methods for organoid characterization often lack standardization,restricting their broader applicability. To address the need for standardized quality assessment of cerebral organoids,we developed a Quality Control (QC) methodology for 60-day cortical organoids,evaluating five key criteria using a scoring system: morphology,size and growth profile,cellular composition,cytoarchitectural organization,and cytotoxicity. We implemented a hierarchical approach,beginning with non-invasive assessments to exclude low-quality organoids,while reserving in-depth analyses for those that passed the initial evaluation. To validate this framework,we exposed 60-day cortical organoids to graded doses of hydrogen peroxide (H2O2),inducing a range of quality outcomes. The QC system demonstrated its robustness by accurately discriminating organoid qualities. Our proposed QC framework is designed to be user-friendly,flexible,and broadly applicable,making it suitable for routine assessment of cerebral organoid quality. Additionally,its scalability enables industrial applications,offering a valuable tool for advancing both fundamental and pre-clinical research.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-14425-x.
View Publication