Fibrodysplasia ossificans progressiva (FOP) syndrome is caused by mutation of the gene ACVR1,encoding a constitutive active bone morphogenetic protein type I receptor (also called ALK2) to induce heterotopic ossification in the patient. To genetically correct it,we attempted to generate the mutant ALK2-iPSCs (mALK2-iPSCs) from FOP-human dermal fibroblasts. However,the mALK2 leads to inhibitory pluripotency maintenance,or impaired clonogenic potential after single-cell dissociation as an inevitable step,which applies gene-correction tools to induced pluripotent stem cells (iPSCs). Thus,current iPSC-based gene therapy approach reveals a limitation that is not readily applicable to iPSCs with ALK2 mutation. Here we developed a simplified one-step procedure by simultaneously introducing reprogramming and gene-editing components into human fibroblasts derived from patient with FOP syndrome,and genetically treated it. The mixtures of reprogramming and gene-editing components are composed of reprogramming episomal vectors,CRISPR/Cas9-expressing vectors and single-stranded oligodeoxynucleotide harboring normal base to correct ALK2 c.617GtextgreaterA. The one-step-mediated ALK2 gene-corrected iPSCs restored global gene expression pattern,as well as mineralization to the extent of normal iPSCs. This procedure not only helps save time,labor and costs but also opens up a new paradigm that is beyond the current application of gene-editing methodologies,which is hampered by inhibitory pluripotency-maintenance requirements,or vulnerability of single-cell-dissociated iPSCs.
View Publication