BACKGROUND Many groups have generated insulin-secreting cells from hESCs/iPSCs in multiple differentiation stages by mimicking the developmental processes. However,these cells do not always secrete glucose responsive insulin,one of the most important characteristics of pancreatic $$ cells. We focused on the importance of endodermal differentiation from human iPSCs in order to obtain functional pancreatic $$ cells. METHODS We established a 6-stage protocol for the differentiation process from hiPSCs to pancreatic $$ cells using defined culture media without feeders or serum. We examined the effect of CHIR99021,the selective inhibitor of GSK-3$$,in the presence of Activin,FGF2,and BMP4 during definitive endodermal induction by immunostaining for SOX17 and FOXA2. We also compared the insulin secretion at the last stage between monolayer culture and spheroid culture conditions. Cultured cells were transplanted under the kidney capsules of STZ-induced diabetic NOD-SCID mice,and blood glucose levels were measured. Immunohistochemical analysis was performed 4 weeks and 12 weeks after transplantation. RESULTS Addition of CHIR99021 in the presence of Activin,FGF2,and BMP4 for 2 days improved the viability of the endodermal cells,keeping the high positive rate of SOX17. Spheroid formation after the endocrine progenitor stage showed more efficient insulin secretion than monolayer culture did. After cell transplantation,diabetic mice showed lowered blood glucose levels,and we detected islet-like structures in vivo. CONCLUSION We generated functional pancreatic $$ cells from human iPS cells. Induction of definitive endoderm and spheroid formation might be key steps for producing them.
View Publication