Human TSC2 Mutant Cells Exhibit Aberrations in Early Neurodevelopment Accompanied by Changes in the DNA Methylome
Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart,lungs,kidney,and brain are all hallmarks of the disease,the most severe symptoms of TSC are often neurological,including seizures,autism,psychiatric disorders,and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1). While TSC neurological phenotypes are well-documented,it is not yet known how early in neural development TSC1/2-mutant cells diverge from the typical developmental trajectory. Another outstanding question is the contribution of homozygous-mutant cells to disease phenotypes and whether such phenotypes are also seen in the heterozygous-mutant populations that comprise the vast majority of cells in patients. Using TSC patient-derived isogenic induced pluripotent stem cells (iPSCs) with defined genetic changes,we observed aberrant early neurodevelopment in vitro,including misexpression of key proteins associated with lineage commitment and premature electrical activity. These alterations in differentiation were coincident with hundreds of differentially methylated DNA regions,including loci associated with key genes in neurodevelopment. Collectively,these data suggest that mutation or loss of TSC2 affects gene regulation and expression at earlier timepoints than previously appreciated,with implications for whether and how prenatal treatment should be pursued.
View Publication
(May 2024)
NPJ Parkinson's Disease 10
Upregulated ECM genes and increased synaptic activity in Parkinson’s human DA neurons with
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. Primary symptoms of PD arise with the loss of dopaminergic (DA) neurons in the Substantia Nigra Pars Compacta,but PD also affects the hippocampus and cortex,usually in its later stage. Approximately 15% of PD cases are familial with a genetic mutation. Two of the most associated genes with autosomal recessive (AR) early-onset familial PD are PINK1 and PRKN. In vitro studies of these genetic mutations are needed to understand the neurophysiological changes in patients’ neurons that may contribute to neurodegeneration. In this work,we generated and differentiated DA and hippocampal neurons from human induced pluripotent stem cells (hiPSCs) derived from two patients with a double mutation in their PINK1 and PRKN (one homozygous and one heterozygous) genes and assessed their neurophysiology compared to two healthy controls. We showed that the synaptic activity of PD neurons generated from patients with the PINK1 and PRKN mutations is impaired in the hippocampus and dopaminergic neurons. Mutant dopaminergic neurons had enhanced excitatory post-synaptic activity. In addition,DA neurons with the homozygous mutation of PINK1 exhibited more pronounced electrophysiological differences compared to the control neurons. Signaling network analysis of RNA sequencing results revealed that Focal adhesion and ECM receptor pathway were the top two upregulated pathways in the mutant PD neurons. Our findings reveal that the phenotypes linked to PINK1 and PRKN mutations differ from those from other PD mutations,suggesting a unique interplay between these two mutations that drives different PD mechanisms.
View Publication
Chronic hypoxia remodels the tumor microenvironment to support glioma stem cell growth
Cerebral organoids co-cultured with patient derived glioma stem cells (GLICOs) are an experimentally tractable research tool useful for investigating the role of the human brain tumor microenvironment in glioblastoma. Here we describe long-term GLICOs,a novel model in which COs are grown from embryonic stem cell cultures containing low levels of GSCs and tumor development is monitored over extended durations (ltGLICOs). Single-cell profiling of ltGLICOs revealed an unexpectedly long latency period prior to GSC expansion,and that normal organoid development was unimpaired by the presence of low numbers of GSCs. However,as organoids age they experience chronic hypoxia and oxidative stress which remodels the tumor microenvironment to promote GSC expansion. Receptor-ligand modelling identified astrocytes,which secreted various pro-tumorigenic ligands including FGF1,as the primary cell type for GSC crosstalk and single-cell multi-omic analysis revealed these astrocytes were under the control of ischemic regulatory networks. Functional validation confirmed hypoxia as a driver of pro-tumorigenic astrocytic ligand secretion and that GSC expansion was accelerated by pharmacological induction of oxidative stress. When controlled for genotype,the close association between glioma aggressiveness and patient age has very few proposed biological explanations. Our findings indicate that age-associated increases in cerebral vascular insufficiency and associated regional chronic cerebral hypoxia may contribute to this phenomenon.Supplementary InformationThe online version contains supplementary material available at 10.1186/s40478-024-01755-6.
View Publication
(Jul 2024)
iScience 27 9
CelltypeR: A flow cytometry pipeline to characterize single cells from brain organoids
SummaryMotivated by the cellular heterogeneity in complex tissues,particularly in brain and induced pluripotent stem cell (iPSC)-derived brain models,we developed a complete workflow to reproducibly characterize cell types in complex tissues. Our approach combines a flow cytometry (FC) antibody panel with our computational pipeline CelltypeR,enabling dataset aligning,unsupervised clustering optimization,cell type annotating,and statistical comparisons. Applied to human iPSC derived midbrain organoids,it successfully identified the major brain cell types. We performed fluorescence-activated cell sorting of CelltypeR-defined astrocytes,radial glia,and neurons,exploring transcriptional states by single-cell RNA sequencing. Among the sorted neurons,we identified subgroups of dopamine neurons: one reminiscent of substantia nigra cells most vulnerable in Parkinson’s disease. Finally,we used our workflow to track cell types across a time course of organoid differentiation. Overall,our adaptable analysis framework provides a generalizable method for reproducibly identifying cell types across FC datasets in complex tissues. Graphical abstract Highlights•CelltypeR is a flow cytometry and computational pipeline for cell type quantification•Identified brain cell types in midbrain organoids and measured changes in proportions•Enriched selected populations using FACS and characterized by single-cell RNA sequencing•Identified substantia nigra–like dopaminergic neurons sensitive in Parkinson’s disease Neuroscience; Cell biology; Omics
View Publication
(Nov 2024)
Communications Biology 7
Deep functional measurements of Fragile X syndrome human neurons reveal multiparametric electrophysiological disease phenotype
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by hypermethylation of expanded CGG repeats (>200) in the FMR1 gene leading to gene silencing and loss of Fragile X Messenger Ribonucleoprotein (FMRP) expression. FMRP plays important roles in neuronal function,and loss of FMRP in mouse and human FXS cell models leads to aberrant synaptic signaling and hyperexcitability. Multiple drug candidates have advanced into clinical trials for FXS,but no efficacious treatment has been identified to date,possibly as a consequence of poor translation from pre-clinical animal models to human. Here,we use a high resolution all-optical electrophysiology platform applied to multiple FXS patient-derived and CRISPR/Cas9-generated isogenic neuronal cell lines to develop a multi-parametric FXS disease phenotype. This neurophysiological phenotype was optimized and validated into a high throughput assay based on the amount of FMRP re-expression and the number of healthy neurons in a mosaic network necessary for functional rescue. The resulting highly sensitive and multiparameter functional assay can now be applied as a discovery platform to explore new therapeutic approaches for the treatment of FXS. Deep functional characterization of Fragile X syndrome patient and isogenic neurons using all-optical electrophysiology and machine learning identifies a validated,FMR1-dependent cellular phenotype compatible with high throughput drug screening.
View Publication
(Apr 2025)
Experimental & Molecular Medicine 57 4
Tracing genomic instability in induced mesenchymal stromal cell manufacture: an integration-free transfection approach
Here we systematically investigated genomic alterations from the initiation of induced pluripotent stem (iPS) cell generation to induced mesenchymal stromal/stem cell differentiation. We observed a total of ten copy number alterations (CNAs) and five single-nucleotide variations (SNVs) during the phases of reprogramming,differentiation and passaging. We identified a higher frequency of CNAs and SNVs in iPS cells generated using the Sendai virus (SV) method compared with those generated with episomal vectors (Epi). Specifically,all SV-iPS cell lines exhibited CNAs during the reprogramming phase,while only 40% of Epi-iPS cells showed such alterations. Additionally,SNVs were observed exclusively in SV-derived cells during passaging and differentiation,with no SNVs detected in Epi-derived lines. Gene expression analysis revealed upregulation of chromosomal instability-related genes in late-passage SV-iPSCs,further indicating increased genomic instability. Notably,TP53 mutations were identified,underscoring the vulnerability of the gene and the critical need for careful genomic scrutiny when preparing iPS cells and derived cell lines. Genomic instability in induced pluripotent stem cells revealedThis study explores the potential of using induced pluripotent stem (iPS) cells to create mesenchymal stem (MS) cells for medical treatments. iPS cells can be reprogrammed from regular cells and can become any cell type,including MS cells,which are important for tissue repair. However,a concern is that iPS cells might develop genetic changes that could affect their safety. Here researchers investigated these genetic changes during the creation and growth of iPS cells and their transformation into MS cells using advanced techniques such as chromosomal microarray and next-generation sequencing,alongside conventional methods. The study found that iPS cells often develop genetic alterations,which can persist as they are turned into MS cells. The results suggest that while iPS cells hold promise for regenerative medicine,careful monitoring of genetic stability is crucial. Future research should focus on improving methods to ensure safety of iPS cell-derived therapies.This summary was initially drafted using artificial intelligence,then revised and fact-checked by the author.
View Publication
(Jun 2025)
Nature Communications 16
FXYD2 marks and regulates maturity of ? cells via ion channel-mediated signal transduction
Human pancreatic islets regulate organ development and metabolic homeostasis,with dysfunction leading to diabetes. Human pluripotent stem cells (hPSCs) provide a potential alternative source to cadaveric human pancreatic islets for replacement therapy in diabetes. However,human islet-like organoids (HILOs) generated from hPSCs in vitro often exhibit heterogeneous immature phenotypes such as aberrant gene expression and inadequate insulin secretion in response to glucose. Here we show that FXYD Domain Containing Ion Transport Regulator 2 (FXYD2) marks and regulates functional maturation and heterogeneity of generated HILOs,by controlling the ? cell transcriptome necessary for glucose-stimulated insulin secretion (GSIS). Despite its presence in mature ? cells,FXYD2 is diminished in hPSC-derived ?-like cells. Mechanistically,we find that FXYD2 physically interacts with SRC proto-oncogene,non-receptor tyrosine kinase (SRC) protein to regulate FXYD2-SRC-TEAD1 signaling to modulate ? cell transcriptome. We demonstrate that FXYD2High HILOs significantly outperform FXYD2Low counterparts to improve hyperglycemia in STZ-induced diabetic immune deficient mice. These results suggest that FXYD2 marks and regulates human ? cell maturation via channel-sensing signal transduction and that it can be used as a selection marker for functional heterogeneity of stem cell derived human islet organoids. Tacto et al. uncover a key marker that enables the selection of functional,transplantable human islets derived from stem cells,potentially paving the way for more precise and effective diabetes cell therapy.
View Publication
(Jan 2025)
Nature Communications 16
Altered mitochondria-associated ER membrane (MAM) function shifts mitochondrial metabolism in amyotrophic lateral sclerosis (ALS)
Mitochondrial function is modulated by its interaction with the endoplasmic reticulum (ER). Recent research indicates that these contacts are disrupted in familial models of amyotrophic lateral sclerosis (ALS). We report here that this impairment in the crosstalk between mitochondria and the ER impedes the use of glucose-derived pyruvate as mitochondrial fuel,causing a shift to fatty acids to sustain energy production. Over time,this deficiency alters mitochondrial electron flow and the active/dormant status of complex I in spinal cord tissues,but not in the brain. These findings suggest mitochondria-associated ER membranes (MAM domains) play a crucial role in regulating cellular glucose metabolism and that MAM dysfunction may underlie the bioenergetic deficits observed in ALS. The bioenergetic deficits observed in Amyotrophic Lateral Sclerosis result from the disruption of mitochondria-associated ER membranes. Here,the authors show that this disruption impairs the use of glucose-derived pyruvate,which over time hinders mitochondrial electron flow.
View Publication
(Dec 2024)
Cellular and Molecular Life Sciences: CMLS 82 1
Transcriptome and epigenome dynamics of the clonal heterogeneity of human induced pluripotent stem cells for cardiac differentiation
Human induced pluripotent stem cells (hiPSCs) generate multiple clones with inherent heterogeneity,leading to variations in their differentiation capacity. Previous studies have primarily addressed line-to-line variations in differentiation capacity,leaving a gap in the comprehensive understanding of clonal heterogeneity. Here,we aimed to profile the heterogeneity of hiPSC clones and identify predictive biomarkers for cardiomyocyte (CM) differentiation capacity by integrating transcriptomic,epigenomic,endogenous retroelement,and protein kinase phosphorylation profiles. We generated multiple clones from a single donor and validated that these clones exhibited comparable levels of pluripotency markers. The clones were classified into two groups based on their differentiation efficiency to CMs—productive clone (PC) and non-productive clone (NPC). We performed RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with sequencing (ATAC-seq). NPC was enriched in vasculogenesis and cell adhesion,accompanied by elevated levels of phosphorylated ERK1/2. Conversely,PC exhibited enrichment in embryonic organ development and transcription factor activation,accompanied by increased chromatin accessibility near transcription start site (TSS) regions. Integrative analysis of RNA-seq and ATAC-seq revealed 14 candidate genes correlated with cardiac differentiation potential. Notably,TEK and SDR42E1 were upregulated in NPC. Our integrative profiles enhance the understanding of clonal heterogeneity and highlight two novel biomarkers associated with CM differentiation. This insight may facilitate the identification of suboptimal hiPSC clones,thereby mitigating adverse outcomes in clinical applications.Graphical Abstract
Supplementary InformationThe online version contains supplementary material available at 10.1007/s00018-024-05493-9.
View Publication
(Mar 2024)
iScience 27 4
Deciphering the spatiotemporal transcriptional and chromatin accessibility of human retinal organoid development at the single-cell level
SummaryMolecular information on the early stages of human retinal development remains scarce due to limitations in obtaining early human eye samples. Pluripotent stem cell-derived retinal organoids (ROs) provide an unprecedented opportunity for studying early retinogenesis. Using a combination of single cell RNA-seq and spatial transcriptomics we present for the first-time a single cell spatiotemporal transcriptome of RO development. Our data demonstrate that ROs recapitulate key events of retinogenesis including optic vesicle/cup formation,presence of a putative ciliary margin zone,emergence of retinal progenitor cells and their orderly differentiation to retinal neurons. Combining the scRNA- with scATAC-seq data,we were able to reveal cell-type specific transcription factor binding motifs on accessible chromatin at each stage of organoid development,and to show that chromatin accessibility is highly correlated to the developing human retina,but with some differences in the temporal emergence and abundance of some of the retinal neurons. Graphical abstract Highlights•Single cell analyses reveal putative ciliary margin (pCM) presence in retinal organoids•PCM harbors early RPCs which differentiate to late RPCs and retinal neurons•Single cell ATAC-seq data reveal novel TF binding motifs in RPCs and retinal neurons•RO development largely recapitulates retinogenesis Genetics; Molecular biology; Neuroscience; Cell biology; Omics
View Publication
(Mar 2024)
Bioactive Materials 36
Feeder-free differentiation of human iPSCs into natural killer cells with cytotoxic potential against malignant brain rhabdoid tumor cells
Natural killer (NK) cells are cytotoxic immune cells that can eliminate target cells without prior stimulation. Human induced pluripotent stem cells (iPSCs) provide a robust source of NK cells for safe and effective cell-based immunotherapy against aggressive cancers. In this in vitro study,a feeder-free iPSC differentiation was performed to obtain iPSC-NK cells,and distinct maturational stages of iPSC-NK were characterized. Mature cells of CD56bright CD16bright phenotype showed upregulation of CD56,CD16,and NK cell activation markers NKG2D and NKp46 upon IL-15 exposure,while exposure to aggressive atypical teratoid/rhabdoid tumor (ATRT) cell lines enhanced NKG2D and NKp46 expression. Malignant cell exposure also increased CD107a degranulation markers and stimulated IFN-? secretion in activated NK cells. CD56bright CD16bright iPSC-NK cells showed a ratio-dependent killing of ATRT cells,and the percentage lysis of CHLA-05-ATRT was higher than that of CHLA-02-ATRT. The iPSC-NK cells were also cytotoxic against other brain,kidney,and lung cancer cell lines. Further NK maturation yielded CD56?ve CD16bright cells,which lacked activation markers even after exposure to interleukins or ATRT cells - indicating diminished cytotoxicity. Generation and characterization of different NK phenotypes from iPSCs,coupled with their promising anti-tumor activity against ATRT in vitro,offer valuable insights into potential immunotherapeutic strategies for brain tumors. Graphical abstractImage 1 Highlights•Natural killer (NK) cells were derived from human induced pluripotent stem cells (iPSCs) in the absence of feeder cells.•Various maturational subtypes of iPSC-NK cells were characterized,and the phenotypic and functional properties were studied.•iPSC-NK cells of CD56bright CD16bright phenotype expressed activation markers in response to interleukin stimuli.•iPSC-NK cells were cytotoxic toward human atypical teratoid and rhabdoid tumor (ATRT) cells and other human cancer cells.•The cytotoxicity of iPSC-NK cells against various cancer cells in vitro might be translated into an in vivo immunotherapy.
View Publication
(Sep 2024)
bioRxiv 13 12
Epigenetic control and inheritance of rDNA arrays
Ribosomal RNA (rRNA) genes exist in multiple copies arranged in tandem arrays known as ribosomal DNA (rDNA). The total number of gene copies is variable,and the mechanisms buffering this copy number variation remain unresolved. We surveyed the number,distribution,and activity of rDNA arrays at the level of individual chromosomes across multiple human and primate genomes. Each individual possessed a unique fingerprint of copy number distribution and activity of rDNA arrays. In some cases,entire rDNA arrays were transcriptionally silent. Silent rDNA arrays showed reduced association with the nucleolus and decreased interchromosomal interactions,indicating that the nucleolar organizer function of rDNA depends on transcriptional activity. Methyl-sequencing of flow-sorted chromosomes,combined with long read sequencing,showed epigenetic modification of rDNA promoter and coding region by DNA methylation. Silent arrays were in a closed chromatin state,as indicated by the accessibility profiles derived from Fiber-seq. Removing DNA methylation restored the transcriptional activity of silent arrays. Array activity status remained stable through the iPS cell re-programming. Family trio analysis demonstrated that the inactive rDNA haplotype can be traced to one of the parental genomes,suggesting that the epigenetic state of rDNA arrays may be heritable. We propose that the dosage of rRNA genes is epigenetically regulated by DNA methylation,and these methylation patterns specify nucleolar organizer function and can propagate transgenerationally.
View Publication