Inhibition of miR-10b treats metastatic breast cancer by targeting stem cell-like properties
Despite advances in breast cancer screening and treatment,prognosis for metastatic disease remains dismal at 30% five-year survival. This is due,in large,to the failure of current therapeutics to target properties unique to metastatic cells. One of the drivers of metastasis is miR-10b,a small noncoding RNA implicated in cancer cell invasion,migration,viability,and proliferation. We have developed a nanodrug,termed MN-anti-miR10b,that delivers anti-miR-10b antisense oligomers to cancer cells. In mouse models of metastatic triple-negative breast cancer,MN-anti-miR10b has been shown to prevent onset of metastasis and eliminate existing metastases in combination with chemotherapy,even after treatment has been stopped. Recent studies have implicated miR-10b in conferring stem cell-like properties onto cancer cells,such as chemoresistance. In this study,we show transcriptional evidence that inhibition of miR-10b with MN-anti-miR10b activates developmental processes in cancer cells and that stem-like cancer cells have increased miR-10b expression. We then demonstrate that treatment of breast cancer cells with MN-anti-miR10b reduces their stemness,confirming that these properties make metastatic cells susceptible to the nanodrug actions. Collectively,these findings indicate that inhibition of miR-10b functions to impair breast cancer cell stemness,positioning MN-anti-miR10b as an effective treatment option for stem-like breast cancer subtypes.
View Publication
文献
J. Holzgruber et al. (Aug 2024)
Nature Communications 15
Type I interferon signaling induces melanoma cell-intrinsic PD-1 and its inhibition antagonizes immune checkpoint blockade
Programmed cell death 1 (PD-1) is a premier cancer drug target for immune checkpoint blockade (ICB). Because PD-1 receptor inhibition activates tumor-specific T-cell immunity,research has predominantly focused on T-cell-PD-1 expression and its immunobiology. In contrast,cancer cell-intrinsic PD-1 functional regulation is not well understood. Here,we demonstrate induction of PD-1 in melanoma cells via type I interferon receptor (IFNAR) signaling and reversal of ICB efficacy through IFNAR pathway inhibition. Treatment of melanoma cells with IFN-α or IFN-β triggers IFNAR-mediated Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling,increases chromatin accessibility and resultant STAT1/2 and IFN regulatory factor 9 (IRF9) binding within a PD-1 gene enhancer,and leads to PD-1 induction. IFNAR1 or JAK/STAT inhibition suppresses melanoma-PD-1 expression and disrupts ICB efficacy in preclinical models. Our results uncover type I IFN-dependent regulation of cancer cell-PD-1 and provide mechanistic insight into the potential unintended ICB-neutralizing effects of widely used IFNAR1 and JAK inhibitors. Subject terms: Melanoma,Cancer immunotherapy,Tumour immunology
View Publication
文献
Y. Nakashima et al. (Jul 2024)
Molecular Therapy. Methods & Clinical Development 32 3
Atelocollagen supports three-dimensional culture of human induced pluripotent stem cells
As autologous induced pluripotent stem cell (iPSC) therapy requires a custom-made small-lot cell production line,and the cell production method differs significantly from the existing processes for producing allogeneic iPSC stocks for clinical use. Specifically,mass culture to produce stock is no longer necessary; instead,a series of operations from iPSC production to induction of differentiation of therapeutic cells must be performed continuously. A three-dimensional (3D) culture method using small,closed-cell manufacturing devices is suitable for autologous iPSC therapy. The use of such devices avoids the need to handle many patient-derived specimens in a single clean room; handling of cell cultures in an open system in a cell processing facility increases the risk of infection. In this study,atelocollagen beads were evaluated as a 3D biomaterial to assist 3D culture in the establishment,expansion culture,and induction of differentiation of iPSCs. It was found that iPSCs can be handled in a closed-cell device with the same ease as use of a two-dimensional (2D) culture when laminin-511 is added to the medium. In conclusion,atelocollagen beads enable 3D culture of iPSCs,and the quality of the obtained cells is at the same level as those derived from 2D culture.
View Publication
文献
W. Zhang et al. (Aug 2024)
Cell Death & Disease 15 8
Hexokinase HK3-mediated O-GlcNAcylation of EP300: a key regulator of PD-L1 expression and immune evasion in ccRCC
Clear cell renal cell carcinoma (ccRCC) demonstrates enhanced glycolysis,critically contributing to tumor development. Programmed death-ligand 1 (PD-L1) aids tumor cells in evading T-cell-mediated immune surveillance. Yet,the specific mechanism by which glycolysis influences PD-L1 expression in ccRCC is not fully understood. Our research identified that the glycolysis-related gene (GRG) HK3 has a unique correlation with PD-L1 expression. HK3 has been identified as a key regulator of O-GlcNAcylation in ccRCC. O-GlcNAcylation exists on the serine 900 (Ser900) site of EP300 and can enhance its stability and oncogenic activity by preventing ubiquitination. Stably expressed EP300 works together with TFAP2A as a co-transcription factor to promote PD-L1 transcription and as an acetyltransferase to stabilize PD-L1 protein. Furthermore,ccRCC exhibits interactive dynamics with tumor-associated macrophages (TAMs). The uridine 5′-diphospho-N-acetylglucosamine (UDP-GlcNAc),which serves as a critical substrate for the O-GlcNAcylation process,facilitates TAMs polarization. In ccRCC cells,HK3 expression is influenced by IL-10 secreted by M2 TAMs. Our study elucidates that HK3-mediated O-GlcNAcylation of EP300 is involved in tumor immune evasion. This finding suggests potential strategies to enhance the efficacy of immune checkpoint blockade therapy. Subject terms: Cancer metabolism,Renal cell carcinoma
View Publication
文献
Y. Yoneda et al. (Mar 2024)
Biophysics and Physicobiology 21 Supplemental
Real-time imaging of human endothelial-to-hematopoietic transition in vitro using pluripotent stem cell derived hemogenic endothelium
During embryogenesis,human hematopoietic stem cells (HSCs) first emerge in the aorta-gonad-mesonephros (AGM) region via transformation of specialized hemogenic endothelial (HE) cells into premature HSC precursors. This process is termed endothelial-to-hematopoietic transition (EHT),in which the HE cells undergo drastic functional and morphological changes from flat,anchorage-dependent endothelial cells to free-floating round hematopoietic cells. Despite its essential role in human HSC development,molecular mechanisms underlying the EHT are largely unknown. This is due to lack of methods to visualize the emergence of human HSC precursors in real time in contrast to mouse and other model organisms. In this study,by inducing HE from human pluripotent stem cells in feeder-free monolayer cultures,we achieved real-time observation of the human EHT in vitro . By continuous observation and single-cell tracking in the culture,it was possible to visualize a process that a single endothelial cell gives rise to a hematopoietic cell and subsequently form a hematopoietic-cell cluster. The EHT was also confirmed by a drastic HE-to-HSC switching in molecular marker expressions. Notably,HSC precursor emergence was not linked to asymmetric cell division,whereas the hematopoietic cell cluster was formed through proliferation and assembling of the floating cells after the EHT. These results reveal unappreciated dynamics in the human EHT,and we anticipate that our human EHT model in vitro will provide an opportunity to improve our understanding of the human HSC development.
View Publication
文献
P. Lisowski et al. (Aug 2024)
Nature Communications 15
Mutant huntingtin impairs neurodevelopment in human brain organoids through CHCHD2-mediated neurometabolic failure
Expansion of the glutamine tract (poly-Q) in the protein huntingtin (HTT) causes the neurodegenerative disorder Huntington’s disease (HD). Emerging evidence suggests that mutant HTT (mHTT) disrupts brain development. To gain mechanistic insights into the neurodevelopmental impact of human mHTT,we engineered male induced pluripotent stem cells to introduce a biallelic or monoallelic mutant 70Q expansion or to remove the poly-Q tract of HTT. The introduction of a 70Q mutation caused aberrant development of cerebral organoids with loss of neural progenitor organization. The early neurodevelopmental signature of mHTT highlighted the dysregulation of the protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2),a transcription factor involved in mitochondrial integrated stress response. CHCHD2 repression was associated with abnormal mitochondrial morpho-dynamics that was reverted upon overexpression of CHCHD2. Removing the poly-Q tract from HTT normalized CHCHD2 levels and corrected key mitochondrial defects. Hence,mHTT-mediated disruption of human neurodevelopment is paralleled by aberrant neurometabolic programming mediated by dysregulation of CHCHD2,which could then serve as an early interventional target for HD. Subject terms: Huntington's disease,Mechanisms of disease,Stem cells
View Publication
文献
W. Yang et al. (Aug 2024)
Frontiers in Cellular Neuroscience 18
Genome-wide sequencing identified extrachromosomal circular DNA as a transcription factor-binding motif of the senescence genes that govern replicative senescence in human mesenchymal stem cells
Mesenchymal stem cells (MSCs) have long been postulated as an important source cell in regenerative medicine. During subculture expansion,mesenchymal stem cell (MSC) senescence diminishes their multi-differentiation capabilities,leading to a loss of therapeutic potential. Up to date,the extrachromosomal circular DNAs (eccDNAs) have been demonstrated to be involved in senescence but the roles of eccDNAs during MSC. Here we explored eccDNA profiles in human bone marrow MSCs (BM-MSCs). EccDNA and mRNA was purified and sequenced,followed by quantification and functional annotation. Moreover,we mapped our datasets with the downloading enhancer and transcription factor-regulated genes to explore the potential role of eccDNAs. Sequentially,gene annotation analysis revealed that the majority of eccDNA were mapped in the intron regions with limited BM-MSC enhancer overlaps. We discovered that these eccDNA motifs in senescent BMSCs acted as motifs for binding transcription factors (TFs) of senescence-related genes. These findings are highly significant for identifying biomarkers of senescence and therapeutic targets in mesenchymal stem cells (MSCs) for future clinical applications. The potential of eccDNA as a stable therapeutic target for senescence-related disorders warrants further investigation,particularly exploring chemically synthesized eccDNAs as transcription factor regulatory elements to reverse cellular senescence.
View Publication
文献
A. E. Williamson et al. (Aug 2024)
Nature Communications 15
Discovery of an embryonically derived bipotent population of endothelial-macrophage progenitor cells in postnatal aorta
Converging evidence indicates that extra-embryonic yolk sac is the source of both macrophages and endothelial cells in adult mouse tissues. Prevailing views are that these embryonically derived cells are maintained after birth by proliferative self-renewal in their differentiated states. Here we identify clonogenic endothelial-macrophage (EndoMac) progenitor cells in the adventitia of embryonic and postnatal mouse aorta,that are independent of Flt3-mediated bone marrow hematopoiesis and derive from an early embryonic CX 3 CR1 + and CSF1R + source. These bipotent progenitors are proliferative and vasculogenic,contributing to adventitial neovascularization and formation of perfused blood vessels after transfer into ischemic tissue. We establish a regulatory role for angiotensin II,which enhances their clonogenic and differentiation properties and rapidly stimulates their proliferative expansion in vivo. Our findings demonstrate that embryonically derived EndoMac progenitors participate in local vasculogenic responses in the aortic wall by contributing to the expansion of endothelial cells and macrophages postnatally. Subject terms: Angiogenesis,Myelopoiesis,Haematopoietic stem cells
View Publication
文献
M. Lopez-Cavestany et al. (Aug 2024)
ACS Nano 18 34
Superhydrophobic Array Devices for the Enhanced Formation of 3D Cancer Models
During the metastatic cascade,cancer cells travel through the bloodstream as circulating tumor cells (CTCs) to a secondary site. Clustered CTCs have greater shear stress and treatment resistance,yet their biology remains poorly understood. We therefore engineered a tunable superhydrophobic array device (SHArD). The SHArD-C was applied to culture a clinically relevant model of CTC clusters. Using our device,we cultured a model of cancer cell aggregates of various sizes with immortalized cancer cell lines. These exhibited higher E-cadherin expression and are significantly more capable of surviving high fluid shear stress-related forces compared to single cells and model clusters grown using the control method,helping to explain why clustering may provide a metastatic advantage. Additionally,the SHArD-S,when compared with the AggreWell 800 method,provides a more consistent spheroid-forming device culturing reproducible sizes of spheroids for multiple cancer cell lines. Overall,we designed,fabricated,and validated an easily tunable engineered device which grows physiologically relevant three-dimensional (3D) cancer models containing tens to thousands of cells.
View Publication
文献
M. Astorkia et al. (Jul 2024)
Heliyon 10 14
Molecular and network disruptions in neurodevelopment uncovered by single cell transcriptomics analysis of CHD8 heterozygous cerebral organoids
More than 100 genes have been associated with significantly increased risks of autism spectrum disorders (ASD) with an estimate of ∼1000 genes that may contribute. The new challenge is to investigate the molecular and cellular functions of these genes during neural and brain development,and then even more challenging,to link the altered molecular and cellular phenotypes to the ASD clinical manifestations. In this study,we used single-cell RNA-seq analysis to study one of the top risk genes,CHD8,in cerebral organoids,which models early neural development. We identified 21 cell clusters in the organoid samples,representing non-neuronal cells,neural progenitors,and early differentiating neurons at the start of neural cell fate commitment. Comparisons of the cells with one copy of a CHD8 knockout allele,generated by CRISPR/Cas9 editing,and their isogenic controls uncovered thousands of differentially expressed genes,which were enriched with functions related to neural and brain development,cilium organization,and extracellular matrix organization. The affected genes were also enriched with genes and pathways previously implicated in ASD,but surprisingly not for schizophrenia and intellectual disability risk genes. The comparisons also uncovered cell composition changes,indicating potentially altered neural differential trajectories upon CHD8 reduction. Moreover,we found that cell-cell communications were affected in the CHD8 knockout organoids,including the interactions between neural and glial cells. Taken together,our results provide new data and information for understanding CHD8 functions in the early stages of neural lineage development and interaction.
View Publication
文献
L. M. Weskamm et al. (Jul 2024)
iScience 27 8
Dissecting humoral immune responses to an MVA-vectored MERS-CoV vaccine in humans using a systems serology approach
Besides neutralizing antibodies,which are considered an important measure for vaccine immunogenicity,Fc-mediated antibody functions can contribute to antibody-mediated protection. They are strongly influenced by structural antibody properties such as subclass and Fc glycan composition. We here applied a systems serology approach to dissect humoral immune responses induced by MVA-MERS-S,an MVA-vectored vaccine against the Middle East respiratory syndrome coronavirus (MERS-CoV). Building on preceding studies reporting the safety and immunogenicity of MVA-MERS-S,our study highlights the potential of a late boost,administered one year after prime,to enhance both neutralizing and Fc-mediated antibody functionality compared to the primary vaccination series. Distinct characteristics were observed for antibodies specific to the MERS-CoV spike protein S1 and S2 subunits,regarding subclass and glycan compositions as well as Fc functionality. These findings highlight the benefit of a late homologous booster vaccination with MVA-MERS-S and may be of interest for the design of future coronavirus vaccines. Subject areas: Cell biology,Immune response,Immunology,Virology
View Publication
文献
X. Yuan et al. (Aug 2024)
Thrombosis Journal 22
miR-1915-3p regulates megakaryocytic and erythroid differentiation by targeting SOCS4
Proper control of the lineage bias of megakaryocytic and erythroid progenitor cells (MEPs) is of significant importance,the disorder of which will lead to abnormalities in the number and function of platelets and erythrocytes. Unfortunately,the signaling pathways regulating MEP differentiation largely remain to be elucidated. This study aimed to analyze the role and the underlying molecular mechanism of miR-1915-3p in megakaryocytic and erythroid differentiation. We utilized miRNA mimics and miRNA sponge to alter the expression of miR-1915-3p in megakaryocytic and/or erythroid potential cells; siRNA and overexpression plasmid to change the expression of SOCS4,a potential target of miR-1915-3p. The expression of relevant surface markers was detected by flow cytometry. We scanned for miR-1915-3p target genes by mRNA expression profiling and bioinformatic analysis,and confirmed the targeting by dual-luciferase reporter assay,western blot and gain- and lost-of-function studies. One-way ANOVA and t-test were used to analyze the statistical significance. In this study,overexpression or knockdown of miR-1915-3p inhibited or promoted erythroid differentiation,respectively. Accordingly,we scanned for miR-1915-3p target genes and confirmed that SOCS4 is one of the direct targets of miR-1915-3p. An attentive examination of the endogenous expression of SOCS4 during megakaryocytic and erythroid differentiation suggested the involvement of SOCS4 in erythroid/megakaryocytic lineage determination. SOCS4 knockdown lessened erythroid surface markers expression,as well as improved megakaryocytic differentiation,similar to the effects of miR-1915-3p overexpression. While SOCS4 overexpression resulted in reversed effects. SOCS4 overexpression in miR-1915-3p upregulated cells rescued the effect of miR-1915-3p. miR-1915-3p acts as a negative regulator of erythropoiesis,and positively in thrombopoiesis. SOCS4 is one of the key mediators of miR-1915-3p during the differentiation of MEPs. The online version contains supplementary material available at 10.1186/s12959-024-00615-6.
View Publication