Sirtinol treatment reduces inflammation in human dermal microvascular endothelial cells.
Histone deacetylases (HDAC) are key enzymes in the epigenetic control of gene expression. Recently,inhibitors of class I and class II HDAC have been successfully employed for the treatment of different inflammatory diseases such as rheumatoid arthritis,colitis,airway inflammation and asthma. So far,little is known so far about a similar therapeutic effect of inhibitors specifically directed against sirtuins,the class III HDAC. In this study,we investigated the expression and localization of endogenous sirtuins in primary human dermal microvascular endothelial cells (HDMEC),a cell type playing a key role in the development and maintenance of skin inflammation. We then examined the biological activity of sirtinol,a specific sirtuin inhibitor,in HDMEC response to pro-inflammatory cytokines. We found that,even though sirtinol treatment alone affected only long-term cell proliferation,it diminishes HDMEC inflammatory responses to tumor necrosis factor (TNF)α and interleukin (IL)-1β. In fact,sirtinol significantly reduced membrane expression of adhesion molecules in TNFã- or IL-1β-stimulated cells,as well as the amount of CXCL10 and CCL2 released by HDMEC following TNFα treatment. Notably,sirtinol drastically decreased monocyte adhesion on activated HDMEC. Using selective inhibitors for Sirt1 and Sirt2,we showed a predominant involvement of Sirt1 inhibition in the modulation of adhesion molecule expression and monocyte adhesion on activated HDMEC. Finally,we demonstrated the in vivo expression of Sirt1 in the dermal vessels of normal and psoriatic skin. Altogether,these findings indicated that sirtuins may represent a promising therapeutic target for the treatment of inflammatory skin diseases characterized by a prominent microvessel involvement.
View Publication
文献
Nishino T et al. (JAN 2011)
PloS one 6 9 e24298
Ex vivo expansion of human hematopoietic stem cells by garcinol, a potent inhibitor of histone acetyltransferase.
BACKGROUND: Human cord blood (hCB) is the main source of hematopoietic stem and progenitor cells (HSCs/PCs) for transplantation. Efforts to overcome relative shortages of HSCs/PCs have led to technologies to expand HSCs/PCs ex vivo. However,methods suitable for clinical practice have yet to be fully established. METHODOLOGY/PRINCIPAL FINDINGS: In this study,we screened biologically active natural products for activity to promote expansion of hCB HSCs/PCs ex vivo,and identified Garcinol,a plant-derived histone acetyltransferase (HAT) inhibitor,as a novel stimulator of hCB HSC/PC expansion. During a 7-day culture of CD34(+)CD38(-) HSCs supplemented with stem cell factor and thrombopoietin,Garcinol increased numbers of CD34(+)CD38(-) HSCs/PCs more than 4.5-fold and Isogarcinol,a derivative of Garcinol,7.4-fold. Furthermore,during a 7-day culture of CD34(+) HSCs/PCs,Garcinol expanded the number of SCID-repopulating cells (SRCs) 2.5-fold. We also demonstrated that the capacity of Garcinol and its derivatives to expand HSCs/PCs was closely correlated with their inhibitory effect on HAT. The Garcinol derivatives which expanded HSCs/PCs inhibited the HAT activity and acetylation of histones,while inactive derivatives did not. CONCLUSIONS/SIGNIFICANCE: Our findings identify Garcinol as the first natural product acting on HSCs/PCs and suggest the inhibition of HAT to be an alternative approach for manipulating HSCs/PCs.
View Publication
文献
Konorov SO et al. (SEP 2011)
Applied Spectroscopy 65 9 1009--1016
Raman microscopy-based cytochemical investigations of potential niche-forming inhomogeneities present in human embryonic stem cell colonies
Measuring spatial and temporal patterns of cytochemical variation in human embryonic stem cell (hESC) colonies is necessary for understanding the role of cellular communication in spontaneous differentiation,the mechanisms of biological niche creation,and structure-generating developmental processes. Such insights will ultimately facilitate directed differentiation and therewith promote advances in tissue engineering and regenerative medicine. However,the patterns of cytochemical inhomogeneities of hESC colonies are not well studied and their causes are not fully understood. We used Raman spectroscopic mapping to contrast supracellular variations in cytochemical composition across pluripotent and partly differentiated hESC colonies to gain a better understanding of the early-stage (i.e.,5 days) effects of the differentiation process on the nature and evolution of these patterns. Higher protein-to-nucleic acid ratios,a differentiation status indicator observed previously using Raman spectroscopy,confirmed reported results that spontaneous differentiation is more pronounced on the edges of a colony than elsewhere. In addition,pluripotent and partly differentiated colonies also showed higher lipid concentrations relative to nucleic acids at colony edges in contrast to relative glycogen concentrations,which were up to 400% more pronounced in the colony centers compared to their edges. Pluripotent and partly differentiated colonies differed,with the latter having higher average protein-to-nucleic acid and lipid-to-nucleic acid ratios but a lower glycogen-to-nucleic acid ratio. In both cases,cell density,pluripotency,and high glycogen appeared to vary in tandem. Spatial variations in glycogen- and protein-to-nucleic acid ratios have features on the order of 100 μm and larger. These dimensions are consistent with those reported for stem cell niches and suggest that cytochemical inhomogeneities may provide colony-level information about niches and niche formation. These results demonstrate Raman mapping to be a potentially useful technique for revealing the complexities in the spatial organization of hESC cultures and thus for monitoring the evolution of engineered hESC niches.
View Publication
文献
Kleinstreuer NC et al. (NOV 2011)
Toxicology and Applied Pharmacology 257 1 111--121
Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics
Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism,pantothenate and CoA biosynthesis,glutathione metabolism,and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information,including Stemina Biomarker Discovery's predictive DevTox® model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity.
View Publication
文献
Wang X et al. (NOV 2011)
Lab on a chip 11 21 3656--3662
Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies.
Sorting (or isolation) and manipulation of rare cells with high recovery rate and purity are of critical importance to a wide range of physiological applications. In the current paper,we report on a generic single cell manipulation tool that integrates optical tweezers and microfluidic chip technologies for handling small cell population sorting with high accuracy. The laminar flow nature of microfluidics enables the targeted cells to be focused on a desired area for cell isolation. To recognize the target cells,we develop an image processing methodology with a recognition capability of multiple features,e.g.,cell size and fluorescence label. The target cells can be moved precisely by optical tweezers to the desired destination in a noninvasive manner. The unique advantages of this sorter are its high recovery rate and purity in small cell population sorting. The design is based on dynamic fluid and dynamic light pattern,in which single as well as multiple laser traps are employed for cell transportation,and a recognition capability of multiple cell features. Experiments of sorting yeast cells and human embryonic stem cells are performed to demonstrate the effectiveness of the proposed cell sorting approach.
View Publication
文献
Valamehr B et al. (SEP 2011)
Regenerative medicine 6 5 623--34
Developing defined culture systems for human pluripotent stem cells.
Human pluripotent stem cells hold promising potential in many therapeutics applications including regenerative medicine and drug discovery. Over the past three decades,embryonic stem cell research has illustrated that embryonic stem cells possess two important and distinct properties: the ability to continuously self-renew and the ability to differentiate into all specialized cell types. In this article,we will discuss the continuing evolution of human pluripotent stem cell culture by examining requirements needed for the maintenance of self-renewal in vitro. We will also elaborate on the future direction of the field toward generating a robust and completely defined culture system,which has brought forth collaborations amongst biologists and engineers. As human pluripotent stem cell research progresses towards identifying solutions for debilitating diseases,it will be critical to establish a defined,reproducible and scalable culture system to meet the requirements of these clinical applications.
View Publication
文献
Avery S (SEP 2011)
Current protocols in stem cell biology Chapter 5 Unit5C.1
Generation of inducible shRNAi human embryonic stem cell lines.
This unit describes the generation of tetracycline-inducible short hairpin RNA interference (shRNAi) human embryonic stem cell (hESC) lines. Using this vector-based approach enables stable and long-term expression of target hairpins under the control of doxycycline/tetracycline. Target degradation can be controlled in both a dose- and time-dependent manner that can even be switched off,depending upon the particular requirements of the study.
View Publication
文献
Kuo T-C et al. (OCT 2011)
Nature cell biology 13 10 1214--23
Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity.
The midbody is a singular organelle formed between daughter cells during cytokinesis and required for their final separation. Midbodies persist in cells long after division as midbody derivatives (MB(d)s),but their fate is unclear. Here we show that MB(d)s are inherited asymmetrically by the daughter cell with the older centrosome. They selectively accumulate in stem cells,induced pluripotent stem cells and potential cancer 'stem cells' in vivo and in vitro. MB(d) loss accompanies stem-cell differentiation,and involves autophagic degradation mediated by binding of the autophagic receptor NBR1 to the midbody protein CEP55. Differentiating cells and normal dividing cells do not accumulate MB(d)s and possess high autophagic activity. Stem cells and cancer cells accumulate MB(d)s by evading autophagosome encapsulation and exhibit low autophagic activity. MB(d) enrichment enhances reprogramming to induced pluripotent stem cells and increases the in vitro tumorigenicity of cancer cells. These results indicate unexpected roles for MB(d)s in stem cells and cancer 'stem cells'.
View Publication
文献
Torrano V et al. (NOV 2011)
Blood 118 18 4910--8
ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor.
ETV6-RUNX1 gene fusion is usually an early,prenatal event in childhood acute lymphoblastic leukemia (ALL). Transformation results in the generation of a persistent (> 14 years) preleukemic clone,which postnatally converts to ALL after the acquisition of necessary secondary genetic alterations. Many cancer cells show some expression of the erythropoietin receptor (EPOR) gene,although the functionality" of any EPOR complexes and their relevant signaling pathways in nonerythroid cells has not been validated. EPOR mRNA is selectively and ectopically expressed in ETV6-RUNX1(+) ALL but the presence of a functional EPOR on the cell surface and its role in leukemogenesis driven by ETV6-RUNX1 remains to be identified. Here we show that ETV6-RUNX1 directly binds the EPOR promoter and that expression of ETV6-RUNX1 alone in normal pre-B cells is sufficient to activate EPOR transcription. We further reveal that murine and human ETV6-RUNX1(+) cells expressing EPOR mRNA have EPO ligand binding activity that correlates with an increased cell survival through activation of the JAK2-STAT5 pathway and up-regulation of antiapoptotic BCL-XL. These data support the contention that ETV6-RUNX1 directly activates ectopic expression of a functional EPOR and provides cell survival signals that may contribute critically to persistence of covert premalignant clones in children.
View Publication
文献
Sebastiano V et al. (NOV 2011)
Stem Cells 29 11 1717--1726
In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases.
The combination of induced pluripotent stem cell (iPSC) technology and targeted gene modification by homologous recombination (HR) represents a promising new approach to generate genetically corrected,patient-derived cells that could be used for autologous transplantation therapies. This strategy has several potential advantages over conventional gene therapy including eliminating the need for immunosuppression,avoiding the risk of insertional mutagenesis by therapeutic vectors,and maintaining expression of the corrected gene by endogenous control elements rather than a constitutive promoter. However,gene targeting in human pluripotent cells has remained challenging and inefficient. Recently,engineered zinc finger nucleases (ZFNs) have been shown to substantially increase HR frequencies in human iPSCs,raising the prospect of using this technology to correct disease causing mutations. Here,we describe the generation of iPSC lines from sickle cell anemia patients and in situ correction of the disease causing mutation using three ZFN pairs made by the publicly available oligomerized pool engineering method (OPEN). Gene-corrected cells retained full pluripotency and a normal karyotype following removal of reprogramming factor and drug-resistance genes. By testing various conditions,we also demonstrated that HR events in human iPSCs can occur as far as 82 bps from a ZFN-induced break. Our approach delineates a roadmap for using ZFNs made by an open-source method to achieve efficient,transgene-free correction of monogenic disease mutations in patient-derived iPSCs. Our results provide an important proof of principle that ZFNs can be used to produce gene-corrected human iPSCs that could be used for therapeutic applications.
View Publication
文献
Pasha Z et al. (JAN 2011)
PloS one 6 8 e23667
Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.
UNLABELLED The current protocols for generation of induced pluripotent stem (iPS) cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs) using small molecules. METHODS AND RESULTS SMs from young male Oct3/4-GFP(+) transgenic mouse were treated with DNA methyltransferase (DNMT) inhibitor,RG108. Two weeks later,GFP(+) colonies of SM derived iPS cells (SiPS) expressing GFP and with morphological similarity of mouse embryonic stem (ESCs) were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity,expressed SSEA1,displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs) formation yielded spontaneously contracting EBs having morphological,molecular,and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group),extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group). A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed. CONCLUSIONS Reprogramming of SMs by DNMT inhibitor is a simple,reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.
View Publication
文献
Hawkins RD et al. (OCT 2011)
Cell Research 21 10 1393--1409
Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency.
Pluripotency,the ability of a cell to differentiate and give rise to all embryonic lineages,defines a small number of mammalian cell types such as embryonic stem (ES) cells. While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes,accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells,as well as maintaining the identity of differentiated cell types. In order to better understand the role of epigenetic mechanisms in pluripotency,we have examined the dynamics of chromatin modifications genome-wide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage. We found that chromatin modifications at promoters remain largely invariant during differentiation,except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression,suggesting a hierarchy in cell fate commitment over most differentially expressed genes. We also mapped over 50 000 potential enhancers,and observed much greater dynamics in chromatin modifications,especially H3K4me1 and H3K27ac,which correlate with expression of their potential target genes. Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs. Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.
View Publication