Canonical Wnt/β-catenin signaling has been suggested to promote self-renewal of pluripotent mouse and human embryonic stem cells. Here,we show that SB-216763,a glycogen synthase kinase-3 (GSK3) inhibitor,can maintain mouse embryonic stem cells (mESCs) in a pluripotent state in the absence of exogenous leukemia inhibitory factor (LIF) when cultured on mouse embryonic fibroblasts (MEFs). MESCs maintained with SB-216763 for one month were morphologically indistinguishable from LIF-treated mESCs and expressed pluripotent-specific genes Oct4,Sox2,and Nanog. Furthermore,Nanog immunostaining was more homogenous in SB-216763-treated colonies compared to LIF. Embryoid bodies (EBs) prepared from these mESCs expressed early-stage markers for all three germ layers,and could efficiently differentiate into cardiac-like cells and MAP2-immunoreactive neurons. To our knowledge,SB-216763 is the first GSK3 inhibitor that can promote self-renewal of mESC co-cultured with MEFs for more than two months.
View Publication
文献
Zhang H et al. (JUL 2012)
Proceedings of the National Academy of Sciences of the United States of America 109 29 11866--11871
Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel.
Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG),leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS,∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG),which encode two repolarizing potassium currents known as I(Ks) and I(Kr). The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of I(Kr) by reducing voltage sensitivity of inactivation,not via slowing of deactivation,could more effectively restore normal QT duration if I(Ks) is reduced. Using a unique specific chemical activator for I(Kr) that has a primary effect of causing a right shift of V(1/2) for inactivation,we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed,this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast,an I(Kr) chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent.
View Publication
文献
Crescini E et al. (JAN 2013)
Biochimica et biophysica acta 1833 1 140--7
Ascorbic acid rescues cardiomyocyte development in Fgfr1(-/-) murine embryonic stem cells.
Fibroblast growth factor receptor 1 (Fgfr1) gene knockout impairs cardiomyocyte differentiation in murine embryonic stem cells (mESC). Here,various chemical compounds able to enhance cardiomyocyte differentiation in mESC [including dimethylsulfoxide,ascorbic acid (vitC),free radicals and reactive oxygen species] were tested for their ability to rescue the cardiomyogenic potential of Fgfr1(-/-) mESC. Among them,only the reduced form of vitC,l-ascorbic acid,was able to recover beating cell differentiation in Fgfr1(-/-) mESC. The appearance of contracting cells was paralleled by the expression of early and late cardiac gene markers,thus suggesting their identity as cardiomyocytes. In the attempt to elucidate the mechanism of action of vitC on Fgfr1(-/-) mESC,we analyzed several parameters related to the intracellular redox state,such as reactive oxygen species content,Nox4 expression,and superoxide dismutase activity. The results did not show any relationship between the antioxidant capacity of vitC and cardiomyocyte differentiation in Fgfr1(-/-) mESC. No correlation was found also for the ability of vitC to modulate the expression of pluripotency genes. Then,we tested the hypothesis that vitC was acting as a prolyl hydroxylase cofactor by maintaining iron in a reduced state. We first analyze hypoxia inducible factor (HIF)-1α mRNA and protein levels that were found to be slightly upregulated in Fgfr1(-/-) cells. We treated mESC with Fe(2+) or the HIF inhibitor CAY10585 during the first phases of the differentiation process and,similar to vitC,the two compounds were able to rescue cardiomyocyte formation in Fgfr1(-/-) mESC,thus implicating HIF-1α modulation in Fgfr1-dependent cardiomyogenesis.
View Publication
文献
Won K-JJ et al. (SEP 2012)
Nucleic Acids Research 40 17 8199--8209
Global identification of transcriptional regulators of pluripotency and differentiation in embryonic stem cells.
Human embryonic stem cells (hESCs) hold great promise for regenerative medicine because they can undergo unlimited self-renewal and retain the capability to differentiate into all cell types in the body. Although numerous genes/proteins such as Oct4 and Gata6 have been identified to play critical regulatory roles in self-renewal and differentiation of hESC,the majority of the regulators in these cellular processes and more importantly how these regulators co-operate with each other and/or with epigenetic modifications are still largely unknown. We propose here a systematic approach to integrate genomic and epigenomic data for identification of direct regulatory interactions. This approach allows reconstruction of cell-type-specific transcription networks in embryonic stem cells (ESCs) and fibroblasts at an unprecedented scale. Many links in the reconstructed networks coincide with known regulatory interactions or literature evidence. Systems-level analyses of these networks not only uncover novel regulators for pluripotency and differentiation,but also reveal extensive interplays between transcription factor binding and epigenetic modifications. Especially,we observed poised enhancers characterized by both active (H3K4me1) and repressive (H3K27me3) histone marks that contain enriched Oct4- and Suz12-binding sites. The success of such a systems biology approach is further supported by experimental validation of the predicted interactions.
View Publication
文献
Lippmann ES et al. (AUG 2012)
Nature biotechnology 30 8 783--791
Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells.
The blood-brain barrier (BBB) is crucial to the health of the brain and is often compromised in neurological disease. Moreover,because of its barrier properties,this endothelial interface restricts uptake of neurotherapeutics. Thus,a renewable source of human BBB endothelium could spur brain research and pharmaceutical development. Here we show that endothelial cells derived from human pluripotent stem cells (hPSCs) acquire BBB properties when co-differentiated with neural cells that provide relevant cues,including those involved in Wnt/β-catenin signaling. The resulting endothelial cells have many BBB attributes,including well-organized tight junctions,appropriate expression of nutrient transporters and polarized efflux transporter activity. Notably,they respond to astrocytes,acquiring substantial barrier properties as measured by transendothelial electrical resistance (1,450 ± 140 Ω cm2),and they possess molecular permeability that correlates well with in vivo rodent blood-brain transfer coefficients.
View Publication
文献
Du J et al. (DEC 2012)
Biochimica et biophysica acta 1826 2 443--57
Ascorbic acid: chemistry, biology and the treatment of cancer.
Since the discovery of vitamin C,the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes,for example via the HIF system,as well as via the epigenetic landscape of cells and tissues. In fact,all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH(-) an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H(2)O(2)). In the presence of catalytic metals this oxidation is accelerated. In this review,we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H(2)O(2) to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer.
View Publication
文献
Orr ME et al. (JUN 2012)
PLoS ONE 7 6 e39328
Genotype-Specific Differences between Mouse CNS Stem Cell Lines Expressing Frontotemporal Dementia Mutant or Wild Type Human Tau
Stem cell (SC) lines that capture the genetics of disease susceptibility provide new research tools. To assess the utility of mouse central nervous system (CNS) SC-containing neurosphere cultures for studying heritable neurodegenerative disease,we compared neurosphere cultures from transgenic mice that express human tau with the P301L familial frontotemporal dementia (FTD) mutation,rTg(tau(P301L))4510,with those expressing comparable levels of wild type human tau,rTg(tau(wt))21221. rTg(tau(P301L))4510 mice express the human tau(P301L) variant in their forebrains and display cellular,histological,biochemical and behavioral abnormalities similar to those in human FTD,including age-dependent differences in tau phosphorylation that distinguish them from rTg(tau(wt))21221 mice. We compared FTD-hallmark tau phosphorylation in neurospheres from rTg(tau(P301L))4510 mice and from rTg(tau(wt))21221 mice. The tau genotype-specific phosphorylation patterns in neurospheres mimicked those seen in mice,validating use of neurosphere cultures as models for studying tau phosphorylation. Genotype-specific tau phosphorylation was observed in 35 independent cell lines from individual fetuses; tau in rTg(tau(P301L))4510 cultures was hypophosphorylated in comparison with rTg(tau(wt))21221 as was seen in young adult mice. In addition,there were fewer human tau-expressing cells in rTg(tau(P301L))4510 than in rTg(tau(wt))21221 cultures. Following differentiation,neuronal filopodia-spine density was slightly greater in rTg(tau(P301L))4510 than rTg(tau(wt))21221 and control cultures. Together with the recapitulation of genotype-specific phosphorylation patterns,the observation that neurosphere lines maintained their cell line-specific-differences and retained SC characteristics over several passages supports the utility of SC cultures as surrogates for analysis of cellular disease mechanisms.
View Publication
文献
Orlikova B et al. (SEP 2012)
Oncology reports 28 3 797--805
Natural chalcones as dual inhibitors of HDACs and NF-κB.
Histone deacetylase enzymes (HDACs) are emerging as a promising biological target for cancer and inflammation. Using a fluorescence assay,we tested the in vitro HDAC inhibitory activity of twenty-one natural chalcones,a widespread group of natural products with well-known anti-inflammatory and antitumor effects. Since HDACs regulate the expression of the transcription factor NF-κB,we also evaluated the inhibitory potential of the compounds on NF-κB activation. Only four chalcones,isoliquiritigenin (no. 10),butein (no. 12),homobutein (no. 15) and the glycoside marein (no. 21) showed HDAC inhibitory activity with IC50 values of 60-190 µM,whereas a number of compounds inhibited TNFα-induced NF-κB activation with IC50 values in the range of 8-41 µM. Interestingly,three chalcones (nos. 10,12 and 15) inhibited both TNFα-induced NF-κB activity and total HDAC activity of classes I,II and IV. Molecular modeling and docking studies were performed to shed light into dual activity and to draw structure-activity relationships among chalcones (nos. 1-21). To the best of our knowledge this is the first study that provides evidence for HDACs as potential drug targets for natural chalcones. The dual inhibitory potential of the selected chalcones on NF-κB and HDACs was investigated for the first time. This study demonstrates that chalcones can serve as lead compounds in the development of dual inhibitors against both targets in the treatment of inflammation and cancer.
View Publication
文献
Munisso MC et al. ( 2012)
Biochimie 94 11 2360--2365
Cilomilast enhances osteoblast differentiation of mesenchymal stem cells and bone formation induced by bone morphogenetic protein 2.
A rapid and efficient method to stimulate bone regeneration would be useful in orthopaedic stem cell therapies. Rolipram is an inhibitor of phosphodiesterase 4 (PDE4),which mediates cyclic adenosine monophosphate (cAMP) degradation. Systemic injection of rolipram enhances osteogenesis induced by bone morphogenetic protein 2 (BMP-2) in mice. However,there is little data on the precise mechanism,by which the PDE4 inhibitor regulates osteoblast gene expression. In this study,we investigated the combined ability of BMP-2 and cilomilast,a second-generation PDE4 inhibitor,to enhance the osteoblastic differentiation of mesenchymal stem cells (MSCs). The alkaline phosphatase (ALP) activity of MSCs treated with PDE4 inhibitor (cilomilast or rolipram),BMP-2,and/or H89 was compared with the ALP activity of MSCs differentiated only by osteogenic medium (OM). Moreover,expression of Runx2,osterix,and osteocalcin was quantified using real-time polymerase chain reaction (RT-PCR). It was found that cilomilast enhances the osteoblastic differentiation of MSCs equally well as rolipram in primary cultured MSCs. Moreover,according to the H89 inhibition experiments,Smad pathway was found to be an important signal transduction pathway in mediating the osteogenic effect of BMP-2,and this effect is intensified by an increase in cAMP levels induced by PDE4 inhibitor.
View Publication
文献
Liang Y et al. (APR 2013)
Chinese journal of cancer 32 4 205--12
The propensity for tumorigenesis in human induced pluripotent stem cells is related with genomic instability.
The discovery of induced pluripotent stem cells(iPSCs) is a promising advancement in the field of regenerative medicine. Previous studies have indicated that the teratoma-forming propensity of iPSCs is variable; however,the relationship between tumorigenic potential and genomic instability in human iPSCs (HiPSCs) remains to be fully elucidated. Here,we evaluated the malignant potential of HiPSCs by using both colony formation assays and tumorigenicity tests. We demonstrated that HiPSCs formed tumorigenic colonies when grown in cancer cell culture medium and produced malignancies in immunodeficient mice. Furthermore,we analyzed genomic instability in HiPSCs using whole-genome copy number variation analysis and determined that the extent of genomic instability was related with both the cells' propensity to form colonies and their potential for tumorigenesis. These findings indicate a risk for potential malignancy of HiPSCs derived from genomic instability and suggest that quality control tests,including comprehensive tumorigenicity assays and genomic integrity validation,should be rigorously executed before the clinical application of HiPSCs. In addition,HiPSCs should be generated through the use of combined factors or other approaches that decrease the likelihood of genomic instability.
View Publication
文献
Hosszu KK et al. ( 2012)
Blood 120 6 1228--1237
DC-SIGN, C1q and gC1qR forge a trimolecular receptor complex on the surface of human monocyte-derived immature dendritic cells
C1q modulates the differentiation and function of cells committed to the monocyte-derived dendritic cell (DC) lineage. Because the two C1q receptors found on the DC surface - gC1qR and cC1qR - lack a direct conduit into intracellular elements,we postulated that the receptors must form complexes with transmembrane partners. Here we show that DC-SIGN,a C-type lectin expressed on DCs,binds directly to C1q,as assessed by ELISA,flow cytometry and immuno-precipitation experiments. Surface plasmon resonance analysis revealed that the interaction was specific,and intact C1q,as well as the globular portion of C1q,bound to DC-SIGN. While IgG significantly reduced the binding; the Arg residues (162-163) of the C1q-A-chain,considered to contribute to C1q-IgG interaction,were not required for C1q binding to DC-SIGN. Binding was significantly reduced in the absence of Ca(2+) and by pre-incubation of DC-SIGN with mannan,suggesting that C1q binds to DC-SIGN at its principal Ca(2+)-binding pocket,which has increased affinity for mannose residues. Antigen-capture ELISA and immunofluorescence microscopy revealed that C1q and gC1qR associate with DC-SIGN on blood DC precursors and immature DCs. Thus the data suggest that C1q/gC1qR may regulate DC differentiation and function through DC-SIGN-mediated induction of cell signaling pathways.
View Publication
文献
Bartscht T et al. ( 2012)
Cancer chemotherapy and pharmacology 70 2 221--230
The Src family kinase inhibitors PP2 and PP1 effectively block TGF-beta1-induced cell migration and invasion in both established and primary carcinoma cells.
PURPOSE: We have previously demonstrated that in pancreatic ductal adenocarcinoma (PDAC)-derived cell lines,the common Src family kinase inhibitors PP2 and PP1 effectively inhibited morphologic alterations associated with TGFβ1-mediated epithelial-to-mesenchymal transition (EMT) by blocking the kinase activity of the TGF-β type I receptor ALK5 rather than Src (Ungefroren et al. in Curr Cancer Drug Targets 11:524,2011). In this report,the ability of PP2 and PP1,the more specific Src inhibitor SU6656,and the ALK5 inhibitor SB431542 to functionally block TGF-β1-dependent EMT and cell motility in established PDAC (Panc-1,Colo 357) and primary NSCLC (Tu459) cell lines were investigated. METHODS: The effects of PP2,PP1,SU6656,and SB431542 on TGF-β1-dependent cell scattering/EMT,cell migration/invasion,and expression of invasion-associated genes were measured by using the real-time cell analysis assay on the xCELLigence system and quantitative real-time RT-PCR,respectively. RESULTS: In all three cell lines tested,PP1,PP2,and SB431542 effectively blocked TGF-β1-induced cell scattering/EMT,migration,and invasion and in Colo 357 cells inhibited the induction of the invasion-associated MMP2 and MMP9 genes. In contrast,SU6656 only blocked TGF-β1-induced invasion in Panc-1 and Tu459 but not Colo 357 cells. PP1,and to a greater extent PP2,also inhibited the high spontaneous migratory activity of Panc-1 cells expressing a kinase-active ALK5 mutant. CONCLUSIONS: These data provide evidence that PP2 and PP1 are powerful inhibitors of TGF-β-induced cell migration and invasion in vitro and directly target ALK5. Both agents may be useful as dual TGF-β/Src inhibitors in experimental therapeutics to prevent metastatic spread in late-stage PDAC and NSCLC.
View Publication