An inflammation loop orchestrated by S100A9 and Calprotectin is critical for development of arthritis
OBJECTIVE: The S100A9 and S100A8 proteins are highly expressed by neutrophils and monocytes and are part of a group of damage-associated molecular pattern molecules that trigger inflammatory responses. Sera and synovial fluids of patients with rheumatoid arthritis (RA) contain high concentrations of S100A8/A9 that correlate with disease activity.backslashnbackslashnMETHODS: In this study,we investigated the importance of S100A9 in RA by using neutralizing antibodies in a murine lipopolysaccharide-synchronized collagen-induced arthritis model. We also used an in vitro model of stimulation of human immune cells to decipher the role played by S100A9 in leukocyte migration and pro-inflammatory cytokine secretion.backslashnbackslashnRESULTS: Treatment with anti-S100A9 antibodies improved the clinical score by 50%,diminished immune cell infiltration,reduced inflammatory cytokines,both in serum and in the joints,and preserved bone/collagen integrity. Stimulation of neutrophils with S100A9 protein led to the enhancement of neutrophil transendothelial migration. S100A9 protein also induced the secretion by monocytes of proinflammatory cytokines like TNFα,IL-1β and IL-6,and of chemokines like MIP-1α and MCP-1.backslashnbackslashnCONCLUSION: The effects of anti-S100A9 treatment are likely direct consequences of inhibiting the S100A9-mediated promotion of neutrophil transmigration and secretion of pro-inflammatory cytokines from monocytes. Collectively,our results show that treatment with anti-S100A9 may inhibit amplification of the immune response and help preserve tissue integrity. Therefore,S100A9 is a promising potential therapeutic target for inflammatory diseases like rheumatoid arthritis for which alternative therapeutic strategies are needed.
View Publication
文献
Lagier-Tourenne C et al. (NOV 2012)
Nature neuroscience 15 11 1488--1497
Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs
FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from textgreater5,500 genes in mouse and human brain,primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern,consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of textgreater950 mRNAs,most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain,but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons and in
View Publication
文献
Ruiz S et al. (NOV 2012)
Journal of Biological Chemistry 287 48 40767--40778
Generation of a drug-inducible reporter system to study cell reprogramming in human cells
BACKGROUND Strategies on the basis of doxycycline-inducible lentiviruses in mouse cells allowed the examination of mechanisms governing somatic cell reprogramming. RESULTS Using a doxycycline-inducible human reprogramming system,we identified unreported miRs enhancing reprogramming efficiency. CONCLUSION We generated a drug-inducible human reprogramming reporter system as an invaluable tool for genetic or chemical screenings. SIGNIFICANCE These cellular systems provide a tool to enable the advancement of reprogramming technologies in human cells. Reprogramming of somatic cells into induced pluripotent stem cells is achieved by the expression of defined transcription factors. In the last few years,reprogramming strategies on the basis of doxycycline-inducible lentiviruses in mouse cells became highly powerful for screening purposes when the expression of a GFP gene,driven by the reactivation of endogenous stem cell specific promoters,was used as a reprogramming reporter signal. However,similar reporter systems in human cells have not been generated. Here,we describe the derivation of drug-inducible human fibroblast-like cell lines that express different subsets of reprogramming factors containing a GFP gene under the expression of the endogenous OCT4 promoter. These cell lines can be used to screen functional substitutes for reprogramming factors or modifiers of reprogramming efficiency. As a proof of principle of this system,we performed a screening of a library of pluripotent-enriched microRNAs and identified hsa-miR-519a as a novel inducer of reprogramming efficiency.
View Publication
文献
Koh S et al. (MAR 2013)
Stem cells and development 22 6 951--63
Growth requirements and chromosomal instability of induced pluripotent stem cells generated from adult canine fibroblasts.
In mice and humans,it has been shown that embryonic and adult fibroblasts can be reprogrammed into pluripotency by introducing 4 transcription factors,Oct3/4,Klf4,Sox2,and c-Myc (OKSM). Here,we report the derivation of induced pluripotent stem cells (iPSCs) from adult canine fibroblasts by retroviral OKSM transduction. The isolated canine iPSCs (ciPSCs) were expanded in 3 different culture media [fibroblast growth factor 2 (FGF2),leukemia inhibitory factor (LIF),or FGF2 plus LIF]. Cells cultured in both FGF2 and LIF expressed pluripotency markers [POU5F1 (OCT4),SOX2,NANOG,and LIN28] and embryonic stem cell (ESC)-specific genes (PODXL,DPPA5,FGF5,REX1,and LAMP1) and showed strong levels of alkaline phosphatase expression. In vitro differentiation by formation of embryoid bodies and by directed differentiation generated cell derivatives of all 3 germ layers as confirmed by mRNA and protein expression. In vivo,the ciPSCs created solid tumors,which failed to reach epithelial structure formation,but expressed markers for all 3 germ layers. Array comparative genomic hybridization and chromosomal fluorescence in situ hybridization analyses revealed that while retroviral transduction per se did not result in significant DNA copy number imbalance,there was evidence for the emergence of low-level aneuploidy during prolonged culture or tumor formation. In summary,we were able to derive ciPSCs from adult fibroblasts by using 4 transcription factors. The isolated iPSCs have similar characteristics to ESCs from other species,but the exact cellular mechanisms behind their unique co-dependency on both FGF2 and LIF are still unknown.
View Publication
文献
Sharma A and Wu JC (JAN 2013)
936 247--256
MicroRNA expression profiling of human-induced pluripotent and embryonic stem cells
Clinical implications of induced pluripotent stem (iPS) cell technology are enormous for personalized medicine. However,extensive use of viral approach for ectopic expression of reprogramming factors is a major hurdle in realization of its true potential. Non-viral methods for making iPS cells,although plausible,are impractical because of high cost. MicroRNAs are important cellular modulators that have been shown to rival transcription factors and are important players in embryonic development. We have generated distinct microRNA-omes" signature of iPS cells that remain in a near embryonic stem (ES) cell state and distinct from differentiated cells. Recent advances in the microRNA field and experimentally validated microRNAs warrant a review in experimental protocols for microRNA expression profile."
View Publication
文献
Taylor RE et al. (FEB 2013)
Biomedical Microdevices 15 1 171--181
Sacrificial layer technique for axial force post assay of immature cardiomyocytes
Immature primary and stem cell-derived cardiomyocytes provide useful models for fundamental studies of heart development and cardiac disease,and offer potentialbackslashrbackslashnfor patient specific drug testing and differentiation protocols aimed at cardiac grafts. To assess their potential for augmenting heart function,and to gain insight into cardiac growth and disease,tissue engineers must quantify the contractile forces of these single cells. Currently,axial contractile forces of isolated adult heart cells can only be measuredbackslashrbackslashnby two-point methods such as carbon fiber techniques,which cannot be applied to neonatal and stem cell-derived heart cells because they are more difficult to handle and lack a persistent shape. Here we present a novel axial technique for measuring the contractile forces of isolated immature cardiomyocytes. We overcome cell manipulation and patterning challenges by using a thermoresponsive sacrificialbackslashrbackslashnsupport layer in conjunction with arrays of widely separated elastomeric microposts. Our approach has the potential to be high-throughput,is functionally analogous to current gold-standard axial force assays for adult heart cells,and prescribes elongated cell shapes without protein patterning. Finally,we calibrate these force posts withbackslashrbackslashnpiezoresistive cantilevers to dramatically reduce measurement error typical for soft polymer-based force assays. We report quantitative measurements of peak contractile forces up to 146 nN with post stiffness standard error (26 nN) far betterbackslashrbackslashnthan that based on geometry and stiffness estimates alone. The addition of sacrificial layers to future 2D and 3D cell culturebackslashrbackslashnplatforms will enable improved cell placement and the complex suspension of cells across 3D constructs.
View Publication
文献
Musah S et al. (NOV 2012)
ACS Nano 6 11 10168--10177
Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal
Reaping the promise of human embryonic stem (hES) cells hinges on effective defined culture conditions. Efforts to identify chemically defined environments for hES cell propagation would benefit from understanding the relevant functional properties of the substratum. Biological materials are often employed as substrata,but their complexity obscures a molecular level analysis of their relevant attributes. Because the properties of hydrogels can be tuned and altered systematically,these materials can reveal the impact of substratum features on cell fate decisions. By tailoring the peptide displayed to cells and the substrate mechanical properties,a hydrogel was generated that binds hES cell surface glycosaminoglycans (GAGs) and functions robustly in a defined culture medium to support long-term hES cell self-renewal. A key attribute of the successful GAG-binding hydrogels is their stiffness. Only stiff substrates maintain hES cell proliferation and pluripotency. These findings indicate that cells can respond to mechanical information transmitted via GAG engagement. Additionally,we found that the stiff matrices afforded activation of the paralogous proteins YAP/TAZ,which are transcriptional coactivators implicated in mechanosensing and hES cell pluripotency. These results indicate that the substratum mechanics can be tuned to activate specific pathways linked to pluripotency. Because several different hES and induced pluripotent stem cell lines respond similarly,we conclude that stiff substrata are more effective for the long-term propagation of human pluripotent stem cells.
View Publication
文献
Birbrair A et al. (JAN 2013)
Experimental cell research 319 1 45--63
Skeletal muscle neural progenitor cells exhibit properties of NG2-glia.
Reversing brain degeneration and trauma lesions will depend on cell therapy. Our previous work identified neural precursor cells derived from the skeletal muscle of Nestin-GFP transgenic mice,but their identity,origin,and potential survival in the brain are only vaguely understood. In this work,we show that Nestin-GFP+ progenitor cells share morphological and molecular markers with NG2-glia,including NG2,PDGFRα,O4,NGF receptor (p75),glutamate receptor-1(AMPA),and A2B5 expression. Although these cells exhibit NG2,they do not express other pericyte markers,such as α-SMA or connexin-43,and do not differentiate into the muscle lineage. Patch-clamp studies displayed outward potassium currents,probably carried through Kir6.1 channels. Given their potential therapeutic application,we compared their abundance in tissues and concluded that skeletal muscle is the richest source of predifferentiated neural precursor cells. We found that these cells migrate toward the neurogenic subventricular zone displaying their typical morphology and nestin-GFP expression two weeks after brain injection. For translational purposes,we sought to identify these neural progenitor cells in wild-type species by developing a DsRed expression vector under Nestin-Intron II control. This approach revealed them in nonhuman primates and aging rodents throughout the lifespan.
View Publication
文献
Lu HF et al. (DEC 2012)
Biomaterials 33 36 9179--87
Efficient neuronal differentiation and maturation of human pluripotent stem cells encapsulated in 3D microfibrous scaffolds.
Developing an efficient culture system for controlled human pluripotent stem cell (hPSC) differentiation into selected lineages is a major challenge in realizing stem cell-based clinical applications. Here,we report the use of chitin-alginate 3D microfibrous scaffolds,previously developed for hPSC propagation,to support efficient neuronal differentiation and maturation under chemically defined culture conditions. When treated with neural induction medium containing Noggin/retinoic acid,the encapsulated cells expressed much higher levels of neural progenitor markers SOX1 and PAX6 than those in other treatment conditions. Immunocytochemisty analysis confirmed that the majority of the differentiated cells were nestin-positive cells. Subsequently transferring the scaffolds to neuronal differentiation medium efficiently directed these encapsulated neural progenitors into mature neurons,as detected by RT-PCR and positive immunostaining for neuron markers βIII tubulin and MAP2. Furthermore,flow cytometry confirmed that textgreater90% βIII tubulin-positive neurons was achieved for three independent iPSC and hESC lines,a differentiation efficiency much higher than previously reported. Implantation of these terminally differentiated neurons into SCID mice yielded successful neural grafts comprising MAP2 positive neurons,without tumorigenesis,suggesting a potential safe cell source for regenerative medicine. These results bring us one step closer toward realizing large-scale production of stem cell derivatives for clinical and translational applications.
View Publication
文献
Belkind-Gerson J et al. (JAN 2013)
Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society 25 1 61--9.e7
Nestin-expressing cells in the gut give rise to enteric neurons and glial cells.
BACKGROUND Neuronal stem cells (NSCs) are promising for neurointestinal disease therapy. Although NSCs have been isolated from intestinal musclularis,their presence in mucosa has not been well described. Mucosa-derived NSCs are accessible endoscopically and could be used autologously. Brain-derived Nestin-positive NSCs are important in endogenous repair and plasticity. The aim was to isolate and characterize mucosa-derived NSCs,determine their relationship to Nestin-expressing cells and to demonstrate their capacity to produce neuroglial networks in vitro and in vivo. METHODS Neurospheres were generated from periventricular brain,colonic muscularis (Musc),and mucosa-submucosa (MSM) of mice expressing green fluorescent protein (GFP) controlled by the Nestin promoter (Nestin-GFP). Neuronal stem cells were also grown as adherent colonies from intestinal mucosal organoids. Their differentiation potential was assessed using immunohistochemistry using glial and neuronal markers. Brain and gut-derived neurospheres were transplanted into explants of chick embryonic aneural hindgut to determine their fate. KEY RESULTS Musc- and MSM-derived neurospheres expressed Nestin and gave rise to cells of neuronal,glial,and mesenchymal lineage. Although Nestin expression in tissue was mostly limited to glia co-labelled with glial fibrillary acid protein (GFAP),neurosphere-derived neurons and glia both expressed Nestin in vitro,suggesting that Nestin+/GFAP+ glial cells may give rise to new neurons. Moreover,following transplantation into aneural colon,brain- and gut-derived NSCs were able to differentiate into neurons. CONCLUSIONS & INFERENCES Nestin-expressing intestinal NSCs cells give rise to neurospheres,differentiate into neuronal,glial,and mesenchymal lineages in vitro,generate neurons in vivo and can be isolated from mucosa. Further studies are needed for exploring their potential for treating neuropathies.
View Publication
文献
Ovchinnikov DA et al. (JUL 2012)
World journal of stem cells 4 7 71--9
Generation of a human embryonic stem cell line stably expressing high levels of the fluorescent protein mCherry.
AIM: The generation and characterization of a human embryonic stem cell (hESC) line stably expressing red fluorescent mCherry protein.backslashnbackslashnMETHODS: Lentiviral transduction of a ubiquitously-expressed human EF-1α promoter driven mCherry transgene was performed in MEL2 hESC. Red fluore-scence was assessed by immunofluorescence and flow cytometry. Pluripotency of stably transduced hESC was determined by immunofluorescent pluripotency marker expression,flow cytometry,teratoma assays and embryoid body-based differentiation followed by reverse transcriptase-polymerase chain reaction. Quantification of cell motility and survival was performed with time lapse microscopy.backslashnbackslashnRESULTS: Constitutively fluorescently-labeled hESCs are useful tools for facile in vitro and in vivo tracking of survival,motility and cell spreading on various surfaces before and after differentiation. Here we describe the generation and characterization of a hESC line (MEL2) stably expressing red fluorescent protein,mCherry. This line was generated by random integration of a fluorescent protein-expressing cassette,driven by the ubiquitously-expressed human EF-1α promoter. Stably transfected MEL2-mCherry hESC were shown to express pluripotency markers in the nucleus (POU5F1/OCT4,NANOG and SOX2) and on the cell surface (SSEA4,TRA1-60 and TG30/CD9) and were shown to maintain a normal karyotype in long-term (for at least 35 passages) culture. MEL2-mCherry hESC further readily differentiated into representative cell types of the three germ layers in embryoid body and teratoma based assays and,importantly,maintained robust mCherry expression throughout differentiation. The cell line was next adapted to single-cell passaging,rendering it compatible with numerous bioengineering applications such as measurement of cell motility and cell spreading on various protein modified surfaces,quantification of cell attachment to nanoparticles and rapid estimation of cell survival.backslashnbackslashnCONCLUSION: The MEL2-mCherry hESC line conforms to the criteria of bona fide pluripotent stem cells and maintains red fluorescence throughout differentiation,making it a useful tool for bioengineering and in vivo tracking experiments.
View Publication
文献
Bahl V et al. (DEC 2012)
Reproductive Toxicology 34 4 529--37
Comparison of electronic cigarette refill fluid cytotoxicity using embryonic and adult models
Electronic cigarettes (EC) and refill fluids are distributed with little information on their pre- and postnatal health effects. This study compares the cytotoxicity of EC refill fluids using embryonic and adult cells and examines the chemical characteristics of refill fluids using HPLC. Refill solutions were tested on human embryonic stem cells (hESC),mouse neural stem cells (mNSC),and human pulmonary fibroblasts (hPF) using the MTT assay,and NOAELs and IC50s were determined from dose-response curves. Spectral analysis was performed when products of the same flavor had different MTT outcomes. hESC and mNSC were generally more sensitive to refill solutions than hPF. All products from one company were cytotoxic to hESC and mNSC,but non-cytotoxic to hPF. Cytotoxicity was not due to nicotine,but was correlated with the number and concentration of chemicals used to flavor fluids. Additional studies are needed to fully assess the prenatal effect of refill fluids. ?? 2012 Elsevier Inc.
View Publication