Bianco C et al. (JUN 2013)
Journal of cellular physiology 228 6 1174--1188
Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells.
Human Cripto-1 (CR-1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However,mechanisms that regulate CR-1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study,we investigated the effects of two nuclear receptors,liver receptor homolog (LRH)-1 and germ cell nuclear factor receptor (GCNF) and epigenetic modifications on CR-1 gene expression in NTERA-2 human embryonal carcinoma cells and in breast cancer cells. CR-1 expression in NTERA-2 cells was positively regulated by LRH-1 through direct binding to a DR0 element within the CR-1 promoter,while GCNF strongly suppressed CR-1 expression in these cells. In addition,the CR-1 promoter was unmethylated in NTERA-2 cells,while T47D,ZR75-1,and MCF7 breast cancer cells showed high levels of CR-1 promoter methylation and low CR-1 mRNA and protein expression. Treatment of breast cancer cells with a demethylating agent and histone deacetylase inhibitors reduced methylation of the CR-1 promoter and reactivated CR-1 mRNA and protein expression in these cells,promoting migration and invasion of breast cancer cells. Analysis of a breast cancer tissue array revealed that CR-1 was highly expressed in the majority of human breast tumors,suggesting that CR-1 expression in breast cancer cell lines might not be representative of in vivo expression. Collectively,these findings offer some insight into the transcriptional regulation of CR-1 gene expression and its critical role in the pathogenesis of human cancer.
View Publication
文献
Sandt C et al. (JAN 2013)
Journal of Biophotonics 6 1 60--72
Profiling pluripotent stem cells and organelles using synchrotron radiation infrared microspectroscopy
FTIR micro-spectroscopy is a sensitive,non-destructive and label-free method offering diffraction-limited resolution with high signal-to-noise ratios when combined with a synchrotron radiation source. The vibrational signature of individual cells was used to validate an alternative strategy for reprogramming induced pluripotent stem cells generated from amniocytes. The iPSC lines PB09 and PB10,were reprogrammed from the same amniocyte cell line using respectively the Oct54,Sox2,Lin28,and Nanog and the Oct4 and Sox2 transcription factor cocktail. We show that cells reprogrammed by the two different sets of transfection factors have similar spectral signatures after reprogramming,except for a small subpopulation of cells in one of the cell lines. Mapping HeLa cells at subcellular resolution,we show that the Golgi apparatus,the cytoplasm and the nucleus have a specific spectral signature. The CH(3):CH(2) ratio is the highest in the nucleus and the lowest in the Golgi apparatus/endoplasmic reticulum,in agreement with the membrane composition of these organelles. This is confirmed by specific staining of the organelles with fluorescent dyes. Subcellular differentiation of cell compartments is also demonstrated in living cells.
View Publication
文献
Lee J et al. ( 2012)
Angewandte Chemie (International ed. in English) 51 50 12509--12513
A novel small molecule facilitates the reprogramming of human somatic cells into a pluripotent state and supports the maintenance of an undifferentiated state of human pluripotent stem cells.
Booster of pluripotency: RSC133,a new synthetic derivative of indoleacrylic acid/indolepropionic acid,exhibits dual activity by inhibiting histone deacetylase and DNA methyltransferase. Furthermore it potently improves the reprogramming of human somatic cells into a pluripotent state and aids the growth and maintenance of human pluripotent stem cells (hPSCs).
View Publication
文献
Meuleman W et al. (FEB 2013)
Genome Research 23 2 270--280
Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence
In metazoans,the nuclear lamina is thought to play an important role in the spatial organization of interphase chromosomes,by providing anchoring sites for large genomic segments named lamina-associated domains (LADs). Some of these LADs are cell-type specific,while many others appear constitutively associated with the lamina. Constitutive LADs (cLADs) may contribute to a basal chromosome architecture. By comparison of mouse and human lamina interaction maps,we find that the sizes and genomic positions of cLADs are strongly conserved. Moreover,cLADs are depleted of synteny breakpoints,pointing to evolutionary selective pressure to keep cLADs intact. Paradoxically,the overall sequence conservation is low for cLADs. Instead,cLADs are universally characterized by long stretches of DNA of high A/T content. Cell-type specific LADs also tend to adhere to this A/T rule" in embryonic stem cells�
View Publication
文献
Oh MC et al. (JAN 2012)
PloS one 7 10 e47846
Overexpression of calcium-permeable glutamate receptors in glioblastoma derived brain tumor initiating cells.
Glioblastoma multiforme is the most malignant type of primary brain tumor with a poor prognosis. These tumors consist of a heterogeneous population of malignant cells,including well-differentiated tumor cells and less differentiated cells with stem cell properties. These cancer stem cells,known as brain tumor initiating cells,likely contribute to glioma recurrence,as they are highly invasive,mobile,resistant to radiation and chemotherapy,and have the capacity to self-renew. Glioblastoma tumor cells release excitotoxic levels of glutamate,which may be a key process in the death of peritumoral neurons,formation of necrosis,local inflammation,and glioma-related seizures. Moreover,elevated glutamate levels in the tumor may act in paracrine and autocrine manner to activate glutamate receptors on glioblastoma tumor cells,resulting in proliferation and invasion. Using a previously described culturing condition that selectively promotes the growth of brain tumor initiating cells,which express the stem cell markers nestin and SOX-2,we characterize the expression of α-amino-3-hydroxy-5-methyl-4-isozolepropionic acid (AMPA)-type glutamate receptor subunits in brain tumor initiating cells derived from glioblastomas. Here we show for the first time that glioblastoma brain tumor initiating cells express high concentrations of functional calcium-permeable AMPA receptors,compared to the differentiated tumor cultures consisting of non-stem cells. Up-regulated calcium-permeable AMPA receptor expression was confirmed by immunoblotting,immunocytochemistry,and intracellular calcium imaging in response to specific agonists. Our findings raise the possibility that glutamate secretion in the GBM tumor microenvironment may stimulate brain tumor derived cancer stem cells.
View Publication
文献
Gallo M et al. (JAN 2013)
Cancer Research 73 1 417--427
A Tumorigenic MLL-Homeobox Network in Human Glioblastoma Stem Cells
Glioblastoma growth is driven by cancer cells that have stem cell properties,but molecular determinants of their tumorigenic behavior are poorly defined. In cancer,altered activity of the epigenetic modifiers Polycomb and Trithorax complexes may contribute to the neoplastic phenotype. Here,we provide the first mechanistic insights into the role of the Trithorax protein mixed lineage leukemia (MLL) in maintaining cancer stem cell characteristics in human glioblastoma. We found that MLL directly activates the Homeobox gene HOXA10. In turn,HOXA10 activates a downstream Homeobox network and other genes previously characterized for their role in tumorigenesis. The MLL-Homeobox axis we identified significantly contributes to the tumorigenic potential of glioblastoma stem cells. Our studies suggest a role for MLL in contributing to the epigenetic heterogeneity between tumor-initiating and non-tumor-initiating cells in glioblastoma.
View Publication
文献
Minami I et al. (NOV 2012)
Cell reports 2 5 1448--60
A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions.
Human pluripotent stem cells (hPSCs),including embryonic stem cells and induced pluripotent stem cells,are potentially useful in regenerative therapies for heart disease. For medical applications,clinical-grade cardiac cells must be produced from hPSCs in a defined,cost-effective manner. Cell-based screening led to the discovery of KY02111,a small molecule that promotes differentiation of hPSCs to cardiomyocytes. Although the direct target of KY02111 remains unknown,results of the present study suggest that KY02111 promotes differentiation by inhibiting WNT signaling in hPSCs but in a manner that is distinct from that of previously studied WNT inhibitors. Combined use of KY02111 and WNT signaling modulators produced robust cardiac differentiation of hPSCs in a xeno-free,defined medium,devoid of serum and any kind of recombinant cytokines and hormones,such as BMP4,Activin A,or insulin. The methodology has potential as a means for the practical production of human cardiomyocytes for regeneration therapies.
View Publication
文献
Pond AC et al. ( 2013)
Stem cells (Dayton,Ohio) 31 1 10.1002/stem.1266
Fibroblast Growth Factor Receptor Signaling Is Essential for Normal Mammary Gland Development and Stem Cell Function
Fibroblast growth factor (FGF) signaling plays an important role in embryonic stem cells and adult tissue homeostasis,but the function of FGFs in mammary gland stem cells is less well defined. Both FGFR1 and FGFR2 are expressed in basal and luminal mammary epithelial cells (MECs),suggesting that together they might play a role in mammary gland development and stem cell dynamics. Previous studies have demonstrated that the deletion of FGFR2 resulted only in transient developmental defects in branching morphogenesis. Using a conditional deletion strategy,we investigated the consequences of FGFR1 deletion alone and then the simultaneous deletion of both FGFR1 and FGFR2 in the mammary epithelium. FGFR1 deletion using a keratin 14 promoter-driven Cre-recombinase resulted in an early,yet transient delay in development. However,no reduction in functional outgrowth potential was observed following limiting dilution transplantation analysis. In contrast,a significant reduction in outgrowth potential was observed upon the deletion of both FGFR1 and FGFR2 in MECs using adenovirus-Cre. Additionally,using a fluorescent reporter mouse model to monitor Cre-mediated recombination,we observed a competitive disadvantage following transplantation of both FGFR1/R2-null MECs,most prominently in the basal epithelial cells. This correlated with the complete loss of the mammary stem cell repopulating population in the FGFR1/R2-attenuated epithelium. FGFR1/R2-null MECs were partially rescued in chimeric outgrowths containing wild-type MECs,suggesting the potential importance of paracrine mechanisms involved in the maintenance of the basal epithelial stem cells. These studies document the requirement for functional FGFR signaling in mammary stem cells during development.
View Publication
文献
Mehta A et al. (FEB 2013)
Toxicological Sciences 131 2 458--469
Pharmacoelectrophysiology of viral-free induced pluripotent stem cell-derived human cardiomyocytes
Development of pharmaceutical agents for cardiac indication demands elaborate safety screening in which assessing repolarization of cardiac cells remains a critical path in risk evaluations. An efficient platform for evaluating cardiac repolarization in vitro significantly facilitates drug developmental programs. In a proof of principle study,we examined the effect of antiarrhythmogenic drugs (Vaughan Williams class I-IV) and noncardiac active drugs (terfenadine and cisapride) on the repolarization profile of viral-free human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Extracellular field potential (FP) recording using microelectrode arrays demonstrated significant delayed repolarization as prolonged corrected FP durations (cFPDs) by class I (quinidine and flecainide),class III (sotalol and amiodarone),and class IV (verapamil),whereas class II drugs (propranolol and nadolol) had no effects. Consistent with their sodium channel-blocking ability,class I drugs also significantly reduced FPmin and conduction velocity. Although lidocaine (class IB) had no effects on cFPDs,verapamil shortened cFPD and FPmin by 25 and 50%,respectively. Furthermore,verapamil reduced beating frequencies drastically. Importantly,the examined drugs exhibited dose-response curve on prolongation of cFPDs at an effective range that correlated significantly with therapeutic plasma concentrations achieved clinically. Consistent with clinical outcomes,drug-induced arrhythmia of tachycardia and bigeminy-like waveforms by quinidine,flecainide,and sotalol was demonstrated at supraphysiological concentrations. Furthermore,off-target effects of terfenadine and cisapride on cFPD and Na( + ) channel blockage were similarly revealed. These results suggest that hiPSC-CMs may be useful for safety evaluation of cardioactive and noncardiac acting drugs for personalized medicine.
View Publication
文献
Chan LY et al. (JAN 2013)
Biomaterials 34 2 382--392
Temporal application of topography to increase the rate of neural differentiation from human pluripotent stem cells.
Human pluripotent stem cells (hPSCs) are a promising cell source for tissue engineering and regenerative medicine,especially in the field of neurobiology. Neural differentiation protocols have been developed to differentiate hPSCs into specific neural cells,but these predominantly rely on biochemical cues. Recently,differentiation protocols have incorporated topographical cues to increase the total neuronal yield. However,the means by which these topographical cues improve neuronal yield remains unknown. In this study,we explored the effect of topography on the neural differentiation of hPSC by quantitatively studying the changes in marker expression at a transcript and protein level. We found that 2 ??m gratings increase the rate of neural differentiation,and that an additional culture period of 2 ??m gratings in the absence of neurotrophic signals can improve the neural differentiation of hPSCs. We envisage that this work can be incorporated into future differentiation protocols to decrease the differentiation period as well as the biochemical signals added,thus generating hPSC-derived neural cells in a more cost effective and efficient manner. ?? 2012 Elsevier Ltd.
View Publication
文献
White MP et al. (JAN 2013)
STEM CELLS 31 1 92--103
Limited Gene Expression Variation in Human Embryonic Stem Cell and Induced Pluripotent Stem Cell-Derived Endothelial Cells
Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes,yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified,homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here,we report a differentiation protocol based on embryonic development that consistently yields large numbers of endothelial cells (ECs) derived from multiple hESCs or iPS cells. Mesoderm differentiation of embryoid bodies was maximized,and defined growth factors were used to generate KDR+ EC progenitors. Magnetic purification of a KDR+ progenitor subpopulation resulted in an expanding,homogeneous pool of ECs that expressed EC markers and had functional properties of ECs. Comparison of the transcriptomes revealed limited gene expression variability between multiple lines of human iPS-derived ECs or between lines of ES- and iPS-derived ECs. These results demonstrate a method to generate large numbers of pure human EC progenitors and differentiated ECs from pluripotent stem cells and suggest individual lineages derived from human iPS cells may have significantly less variance than their pluripotent founders. STEM Cells2013;31:92–103
View Publication
文献
Liu G-H et al. (NOV 2012)
Nature 491 7425 0--4
Progressive degeneration of human neural stem cells caused by pathogenic LRRK2
Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019),which is associated with familial and sporadic Parkinson's disease as well as impairment of adult neurogenesis in mice. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson's disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization,clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson's disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson's disease patients. Together,our results identify the nucleus as a previously unknown cellular organelle in Parkinson's disease pathology and may help to open new avenues for Parkinson's disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.
View Publication