Vasiliou V et al. (FEB 2013)
Chemico-biological interactions 202 1-3 2--10
Aldehyde dehydrogenases: from eye crystallins to metabolic disease and cancer stem cells.
The aldehyde dehydrogenase (ALDH) superfamily is composed of nicotinamide adenine dinucleotide (phosphate) (NAD(P)(+))-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. To date,24 ALDH gene families have been identified in the eukaryotic genome. In addition to aldehyde metabolizing capacity,ALDHs have additional catalytic (e.g. esterase and reductase) and non-catalytic activities. The latter include functioning as structural elements in the eye (crystallins) and as binding molecules to endobiotics and xenobiotics. Mutations in human ALDH genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Most recently ALDH polymorphisms have been associated with gout and osteoporosis. Aldehyde dehydrogenase enzymes also play important roles in embryogenesis and development,neurotransmission,oxidative stress and cancer. This article serves as a comprehensive review of the current state of knowledge regarding the ALDH superfamily and the contribution of ALDHs to various physiological and pathophysiological processes.
View Publication
文献
Tsuneyoshi N et al. (NOV 2012)
Genes and Development 26 22 2471--2476
The SMAD2/3 corepressor SNON maintains pluripotency through selective repression of mesendodermal genes in human ES cells
Activin/Nodal signaling via SMAD2/3 maintains human embryonic stem cell (hESC) pluripotency by direct transcriptional regulation of NANOG or,alternatively,induces mesoderm and definitive endoderm (DE) formation. In search of an explanation for these contrasting effects,we focused on SNON (SKIL),a potent SMAD2/3 corepressor that is expressed in hESCs but rapidly down-regulated upon differentiation. We show that SNON predominantly associates with SMAD2 at the promoters of primitive streak (PS) and early DE marker genes. Knockdown of SNON results in premature activation of PS and DE genes and loss of hESC morphology. In contrast,enforced SNON expression inhibits DE formation and diverts hESCs toward an extraembryonic fate. Thus,our findings provide novel mechanistic insight into how a single signaling pathway both regulates pluripotency and directs lineage commitment.
View Publication
文献
Wang A and Liew CG (NOV 2012)
Current protocols in stem cell biology Chapter 5 SUPPL.23 Unit 5B.2
Genetic manipulation of human induced pluripotent stem cells
Human induced pluripotent stem cells (HIPSC) have tremendous value as a source of autologous cells for cellular transplantation in the treatment of degenerative diseases. The protocols described here address methods for large-scale genetic modification of HIPSCs. The first is an optimized method for transfecting HIPSCs cultured in feeder-free conditions. The second method allows nucleofection of trypsinized HIPSCs at an optimal cell density. Both methods enable robust generation of stable HIPSC transfectants within two weeks. Our protocols are highly reproducible and do not require optimization for individual HIPSC and human embryonic stem cell (HESC) lines.
View Publication
文献
Behar RZ et al. (NOV 2012)
Current protocols in stem cell biology 1 SUPPL.23 Unit 1C.13
Adaptation of stem cells to 96-well plate assays: use of human embryonic and mouse neural stem cells in the MTT assay.
Human embryonic stem cells (hESC) are difficult to adapt to 96-well plate assays,such as the MTT assay,because they survive best when plated as colonies,which are not easily counted and plated accurately. Two methods were developed to address this problem. In the first,ROCK inhibitor (ROCKi) was used,which allows accurate counting and plating of single hESC. In the second,small colonies were plated without ROCKi but with adaptations for accurate counting and plating. The MTT assay was also adapted for use with mouse neural stem cells. These methods allow the MTT assay to be conducted rapidly and accurately with high reproducibility between replicate experiments. When screening volatile chemicals in a 96-well plate,vapor effects may occur and dose ranges must be carefully defined. The methods were validated using the NIH assay guidance tool. These methodss could readily be translated to other 96-well plate assay.
View Publication
文献
Maston GA et al. ( 2012)
eLife 1 1 e00068
Non-canonical TAF complexes regulate active promoters in human embryonic stem cells
The general transcription factor TFIID comprises the TATA-box-binding protein (TBP) and approximately 14 TBP-associated factors (TAFs). Here we find,unexpectedly,that undifferentiated human embryonic stem cells (hESCs) contain only six TAFs (TAFs 2,3,5,6,7 and 11),whereas following differentiation all TAFs are expressed. Directed and global chromatin immunoprecipitation analyses reveal an unprecedented promoter occupancy pattern: most active genes are bound by only TAFs 3 and 5 along with TBP,whereas the remaining active genes are bound by TBP and all six hESC TAFs. Consistent with these results,hESCs contain a previously undescribed complex comprising TAFs 2,6,7,11 and TBP. Altering the composition of hESC TAFs,either by depleting TAFs that are present or ectopically expressing TAFs that are absent,results in misregulated expression of pluripotency genes and induction of differentiation. Thus,the selective expression and use of TAFs underlies the ability of hESCs to self-renew.DOI:http://dx.doi.org/10.7554/eLife.00068.001.
View Publication
文献
Stringari C et al. (JAN 2012)
PloS one 7 11 e48014
Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential.
In the stem cell field there is a lack of non invasive and fast methods to identify stem cell's metabolic state,differentiation state and cell-lineage commitment. Here we describe a label-free method that uses NADH as an intrinsic biomarker and the Phasor approach to Fluorescence Lifetime microscopy to measure the metabolic fingerprint of cells. We show that different metabolic states are related to different cell differentiation stages and to stem cell bias to neuronal and glial fate,prior the expression of lineage markers. Our data demonstrate that the NADH FLIM signature distinguishes non-invasively neurons from undifferentiated neural progenitor and stem cells (NPSCs) at two different developmental stages (E12 and E16). NPSCs follow a metabolic trajectory from a glycolytic phenotype to an oxidative phosphorylation phenotype through different stages of differentiation. NSPCs are characterized by high free/bound NADH ratio,while differentiated neurons are characterized by low free/bound NADH ratio. We demonstrate that the metabolic signature of NPSCs correlates with their differentiation potential,showing that neuronal progenitors and glial progenitors have a different free/bound NADH ratio. Reducing conditions in NPSCs correlates with their neurogenic potential,while oxidative conditions correlate with glial potential. For the first time we show that FLIM NADH metabolic fingerprint provides a novel,and quantitative measure of stem cell potential and a label-free and non-invasive means to identify neuron- or glial- biased progenitors.
View Publication
文献
Pino CJ et al. (FEB 2013)
Nephrology,dialysis,transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 28 2 296--302
Cell-based approaches for the treatment of systemic inflammation.
Acute and chronic solid organ failures are costly disease processes with high mortality rates. Inflammation plays a central role in both acute and chronic organ failure,including heart,lung and kidney. In this regard,new therapies for these disorders have focused on inhibiting the mediators of inflammation,including cytokines and free radicals,with little or no success in clinical studies. Recent novel treatment strategies have been directed to cell-based rather than mediator-based approaches,designed to immunomodulate the deleterious effects of inflammation on organ function. One approach,cell therapy,replaces cells that were damaged in the acute or chronic disease process with stem/progenitor technology,to rebalance excessive inflammatory states. As an example of this approach,the use of an immunomodulatory role of renal epithelial progenitor cells to treat acute renal failure (ARF) and multiorgan failure arising from acute kidney injury is reviewed. A second therapeutic pathway,cell processing,does not incorporate stem/progenitor cells in the device,but rather biomimetic materials that remove and modulate the primary cellular components,which promote the worsening organ tissue injury associated with inflammation. The use of an immunomodulating leukocyte selective cytopheretic inhibitory device is also reviewed as an example of this cell processing approach. Both of these unconventional strategies have shown early clinical efficacy in pilot clinical trials and may transform the therapeutic approach to organ failure disorders.
View Publication
文献
Lechman ER et al. (DEC 2012)
Cell stem cell 11 6 799--811
Attenuation of miR-126 activity expands HSC in vivo without exhaustion.
Lifelong blood cell production is governed through the poorly understood integration of cell-intrinsic and -extrinsic control of hematopoietic stem cell (HSC) quiescence and activation. MicroRNAs (miRNAs) coordinately regulate multiple targets within signaling networks,making them attractive candidate HSC regulators. We report that miR-126,a miRNA expressed in HSC and early progenitors,plays a pivotal role in restraining cell-cycle progression of HSC in vitro and in vivo. miR-126 knockdown by using lentiviral sponges increased HSC proliferation without inducing exhaustion,resulting in expansion of mouse and human long-term repopulating HSC. Conversely,enforced miR-126 expression impaired cell-cycle entry,leading to progressively reduced hematopoietic contribution. In HSC/early progenitors,miR-126 regulates multiple targets within the PI3K/AKT/GSK3β pathway,attenuating signal transduction in response to extrinsic signals. These data establish that miR-126 sets a threshold for HSC activation and thus governs HSC pool size,demonstrating the importance of miRNA in the control of HSC function.
View Publication
文献
Sequiera GL et al. (JAN 2013)
Life Sciences 92 1 63--71
Ontogenic development of cardiomyocytes derived from transgene-free human induced pluripotent stem cells and its homology with human heart
Aim: Reprogramming of somatic cells utilizing viral free methods provide a remarkable method to generate human induced pluripotent stem cells (hiPSCs) for regenerative medicine. In this study,we evaluate developmental ontogeny of cardiomyocytes following induced differentiation of hiPSCs. Main Methods: Fibroblasts were reprogrammed with episomal vectors to generate hiPSC and were subsequently differentiated to cardiomyocytes. Ontogenic development of cardiomyocytes was studied by real-time PCR. Key findings: Human iPSCs derived from episomal based vectors maintain classical pluripotency markers,generate teratomas and spontaneously differentiate into three germ layers in vitro. Cardiomyogenic induction of these hiPSCs efficiently generated cardiomyocytes. Ontogenic gene expression studies demonstrated that differentiation of cardiomyocytes was initiated by increased expression of mesodermal markers,followed by early cardiac committed markers,structural and ion channel genes. Furthermore,our correlation analysis of gene expression studies with human heart demonstrated that pivotal structural genes like cardiac troponin,actinin,myosin light chain maintained a high correlation with ion channel genes indicating coordinated activation of cardiac transcriptional machinery. Finally,microelectrode recordings show that these cardiomyocytes could respond aptly to pharmacologically active drugs. Cardiomyocytes showed a chronotropic response to isoproterenol,reduced Na+ influx with quinidine,prolongation of beating rate corrected field potential duration (cFPD) with E-4031 and reduced beating frequency and shortened cFPD with verapamil. Significance: Our study shows that viral free hiPSCs efficiently differentiate into cardiomyocytes with cardiac-specific molecular,structural,and functional properties that recapitulate developmental ontogeny of cardiogenesis. These results,coupled with the potential to generate patient-specific hiPSC lines hold great promise for the development of in vitro platform for drug pharmacogenomics; disease modeling and regenerative medicine. textcopyright 2012 Elsevier Inc. All rights reserved.
View Publication
文献
Zhou T et al. (DEC 2012)
Nature protocols 7 12 2080--9
Generation of human induced pluripotent stem cells from urine samples.
Human induced pluripotent stem cells (iPSCs) have been generated with varied efficiencies from multiple tissues. Yet,acquiring donor cells is,in most instances,an invasive procedure that requires laborious isolation. Here we present a detailed protocol for generating human iPSCs from exfoliated renal epithelial cells present in urine. This method is advantageous in many circumstances,as the isolation of urinary cells is simple (30 ml of urine are sufficient),cost-effective and universal (can be applied to any age,gender and race). Moreover,the entire procedure is reasonably quick--around 2 weeks for the urinary cell culture and 3-4 weeks for the reprogramming--and the yield of iPSC colonies is generally high--up to 4% using retroviral delivery of exogenous factors. Urinary iPSCs (UiPSCs) also show excellent differentiation potential,and thus represent a good choice for producing pluripotent cells from normal individuals or patients with genetic diseases,including those affecting the kidney.
View Publication
文献
Hu S et al. (FEB 2013)
Stem Cells 31 2 259--268
MicroRNA-302 increases reprogramming efficiency via repression of NR2F2
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression through translational inhibition and RNA decay and have been implicated in the regulation of cellular differentiation,proliferation,angiogenesis,and apoptosis. In this study,we analyzed global miRNA and mRNA microarrays to predict novel miRNA-mRNA interactions in human embryonic stem cells and induced pluripotent stem cells (iPSCs). In particular,we demonstrate a regulatory feedback loop between the miR-302 cluster and two transcription factors,NR2F2 and OCT4. Our data show high expression of miR-302 and OCT4 in pluripotent cells,while NR2F2 is expressed exclusively in differentiated cells. Target analysis predicts that NR2F2 is a direct target of miR-302,which we experimentally confirm by reporter luciferase assays and real-time polymerase chain reaction. We also demonstrate that NR2F2 directly inhibits the activity of the OCT4 promoter and thus diminishes the positive feedback loop between OCT4 and miR-302. Importantly,higher reprogramming efficiencies were obtained when we reprogrammed human adipose-derived stem cells into iPSCs using four factors (KLF4,C-MYC,OCT4,and SOX2) plus miR-302 (this reprogramming cocktail is hereafter referred to as KMOS3") when compared to using four factors ("KMOS"). Furthermore�
View Publication
文献
Boucherie C et al. (FEB 2013)
Stem Cells 31 2 408--414
Brief Report: Self-Organizing Neuroepithelium from Human Pluripotent Stem Cells Facilitates Derivation of Photoreceptors
Retinitis pigmentosa,other inherited retinal diseases,and age-related macular degeneration lead to untreatable blindness because of the loss of photoreceptors. We have recently shown that transplantation of mouse photoreceptors can result in improved vision. It is therefore timely to develop protocols for efficient derivation of photoreceptors from human pluripotent stem (hPS) cells. Current methods for photoreceptor derivation from hPS cells require long periods of culture and are rather inefficient. Here,we report that formation of a transient self-organized neuroepithelium from human embryonic stem cells cultured together with extracellular matrix is sufficient to induce a rapid conversion into retinal progenitors in 5 days. These retinal progenitors have the ability to differentiate very efficiently into Crx+ photoreceptor precursors after only 10 days and subsequently acquire rod photoreceptor identity within 4 weeks. Directed differentiation into photoreceptors using this protocol is also possible with human-induced pluripotent stem (hiPS) cells,facilitating the use of patient-specific hiPS cell lines for regenerative medicine and disease modeling. STEM CELLS2013;31:408–414
View Publication