Hough MR et al. (JAN 1996)
Journal of immunology (Baltimore,Md. : 1950) 156 2 479--88
Reduction of early B lymphocyte precursors in transgenic mice overexpressing the murine heat-stable antigen.
To study the role of the murine heat-stable Ag (HSA) in lymphocyte maturation,we generated transgenic mice in which the HSA cDNA was under the transcriptional control of the TCR V beta promoter and Ig mu enhancer. The HSA transgene was expressed during all stages of B lymphocyte maturation. Expression was first detected in the earliest lymphoid-committed progenitors,which normally do not express HSA,and subsequently reached the highest levels in pro- and pre-B cells. In bone marrow,the number of IL-7-responsive clonogenic progenitors was textless 4% of normal,whereas the frequency of earlier B lymphocyte-restricted precursors,detectable as Whitlock-Witte culture-initiating cells,was normal. Pro- and pre-B cells detected by flow cytometry were reduced by approximately 50% relative to controls. Mature splenic B cells were also reduced but to a lesser extent than in marrow,and their response to LPS stimulation was impaired. Reconstitution of SCID and BALB/c-nu/nu mice with HSA transgenic marrow indicated that the perturbations in B lymphopoiesis were not caused by a defective marrow microenvironment or by abnormal T cells. Our previous studies showed elevated HSA expression throughout thymocyte development,which resulted in a profound depletion of CD4+CD8+ double-positive and single-positive thymocytes. Together,these results indicate that HSA levels can determine the capacity of early T and B lymphoid progenitors to proliferate and survive. Therefore,HSA could serve as an important regulator during the early stages of B and T lymphopoiesis.
View Publication
Woods CM et al. ( 1995)
Molecular medicine (Cambridge,Mass.) 1 5 506--526
Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway.
BACKGROUND: At therapeutic concentrations,the antineoplastic agent taxol selectively perturbs mitotic spindle microtubules. Taxol has recently been shown to induce apoptosis,similar to the mechanism of cell death induced by other antineoplastic agents. However,taxol has shown efficacy against drug-refractory cancers,raising the possibility that this pharmacological agent may trigger an alternative apoptotic pathway. MATERIALS AND METHODS: The kinetics and IC50 of mitotic (M) block,aberrant mitosis,and cytotoxicity following taxol treatment were analyzed in human cell lines as well as normal mouse embryo fibroblasts (MEFs) and MEFs derived from p53-null mice. Apoptosis was followed by DNA gel electrophoresis and by in situ DNA end-labeling (TUNEL). RESULTS: Taxol induced two forms of cell cycle arrest: either directly in early M at prophase or,for those cells progressing through aberrant mitosis,arrest in G1 as multimininucleated cells. TUNEL labeling revealed that DNA nicking occurred within 30 min of the arrest in prophase. In contrast,G1-arrested,multimininucleated cells became TUNEL positive only after several days. In the subset of cells that became blocked directly in prophase,both wt p53-expressing and p53-null MEFs responded similarly to taxol,showing rapid onset of DNA nicking and apoptosis. However,p53-null MEFs progressing through aberrant mitosis failed to arrest in the subsequent G1 phase or to become TUNEL positive,and remained viable. CONCLUSIONS: Taxol induces two forms of cell cycle arrest,which in turn induce two independent apoptotic pathways. Arrest in prophase induces rapid onset of a p53-independent pathway,whereas G1-block and the resulting slow (3-5 days) apoptotic pathway are p53 dependent.
View Publication
Podzuweit T et al. (SEP 1995)
Cellular signalling 7 7 733--8
Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine.
Erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA),a potential inhibitor of adenosine deaminase (ADA),was tested as an inhibitor of the soluble cyclic nucleotide phosphodiesterase (PDE) isoenzymes from pig and human myocardium. Four soluble PDE activities were resolved from human papillary muscle extracts using anion exchange chromatography (DEAE Sepharose CL-6B). These activities were designated PDE I-IV according to the nomenclature of Beavo. PDE I was stimulated by Ca(2+)-calmodulin and PDE II by cGMP (1 microM). PDE III was inhibited by cGMP (1 microM) as well as SK&F 94120,and PDE IV by both rolipram and Ro 20-1724. Enzyme kinetics and inhibition constants were similar with the PDE isoenzymes from pig heart. However,porcine myocardium lacked Ca(2+)-calmodulin-stimulated soluble PDE I activity. The present data reveal that EHNA exerted a concentration-dependent inhibition of the cGMP-stimulated PDE II (cGs-PDE) (IC50: 0.8 microM (human),2 microM (pig)) but did not inhibit the other PDE isoenzymes (IC50 textgreater 100 microM). These findings indicate that EHNA is a potent and,as far as cytosolic PDEs are concerned,selective inhibitor of cGMP-stimulated PDEs. The compound may lend itself for the rational design of other isozyme selective PDE II inhibitors and for examining the specific biological functions of cGs-PDEs. EHNA may be used in systems in which inhibition of ADA is of no concern. Conversely,dual inhibition of both ADA and cGs-PDE by EHNA may cause accumulation of two inhibitory metabolites,adenosine and cGMP,which may act in synergy to mediate diverse pharmacological responses,including antiviral,antitumour and antiarrhythmic effects.
View Publication
Stein CA (MAY 1993)
Cancer research 53 10 Suppl 2239--48
Suramin: a novel antineoplastic agent with multiple potential mechanisms of action.
Neben S et al. (MAR 1993)
Experimental hematology 21 3 438--43
Quantitation of murine hematopoietic stem cells in vitro by limiting dilution analysis of cobblestone area formation on a clonal stromal cell line.
Murine hematopoietic stem cells with varying proliferative capacity can be assayed by limiting dilution analysis of cobblestone area" (CA) formation on stromal layers in microlong-term bone marrow cultures. Cobblestone area forming cell (CAFC) frequency determined at early time points (day 7) correlates with mature stem cells measured as day 8 CFU-S�
View Publication
Keller G et al. (JAN 1993)
Molecular and cellular biology 13 1 473--86
Hematopoietic commitment during embryonic stem cell differentiation in culture.
We report that embryonic stem cells efficiently undergo differentiation in vitro to mesoderm and hematopoietic cells and that this in vitro system recapitulates days 6.5 to 7.5 of mouse hematopoietic development. Embryonic stem cells differentiated as embryoid bodies (EBs) develop erythroid precursors by day 4 of differentiation,and by day 6,more than 85% of EBs contain such cells. A comparative reverse transcriptase-mediated polymerase chain reaction profile of marker genes for primitive endoderm (collagen alpha IV) and mesoderm (Brachyury) indicates that both cell types are present in the developing EBs as well in normal embryos prior to the onset of hematopoiesis. GATA-1,GATA-3,and vav are expressed in both the EBs and embryos just prior to and/or during the early onset of hematopoiesis,indicating that they could play a role in the early stages of hematopoietic development both in vivo and in vitro. The initial stages of hematopoietic development within the EBs occur in the absence of added growth factors and are not significantly influenced by the addition of a broad spectrum of factors,including interleukin-3 (IL-3),IL-1,IL-6,IL-11,erythropoietin,and Kit ligand. At days 10 and 14 of differentiation,EB hematopoiesis is significantly enhanced by the addition of both Kit ligand and IL-11 to the cultures. Kinetic analysis indicates that hematopoietic precursors develop within the EBs in an ordered pattern. Precursors of the primitive erythroid lineage appear first,approximately 24 h before precursors of the macrophage and definitive erythroid lineages. Bipotential neutrophil/macrophage and multilineage precursors appear next,and precursors of the mast cell lineage develop last. The kinetics of precursor development,as well as the growth factor responsiveness of these early cells,is similar to that found in the yolk sac and early fetal liver,indicating that the onset of hematopoiesis within the EBs parallels that found in the embryo.
View Publication
Brewer GJ et al. (AUG 1993)
Journal of neuroscience research 35 5 567--76
Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination.
We have systematically optimized the concentrations of 20 components of a previously published serum-free medium (Brewer and Cotman,Brain Res 494: 65-74,1989) for survival of rat embryonic hippocampal neurons after 4 days in culture. This serum-free medium supplement,B27,produced neuron survival above 60%,independent of plating density above 160 plated cells/mm2. For isolated cells (textless 100 cells/mm2),survival at 4 days was still above 45%,but could be rescued to the 60% level at 40 cells/mm2 by simply applying a coverslip on top of the cells. This suggests a need for additional trophic factors. High survival was achieved with osmolarity lower than found in Dulbecco's Modified Eagle's Medium (DMEM),and by reducing cysteine and glutamine concentrations and by the elimination of toxic ferrous sulphate found in DME/F12. Neurobasal is a new medium that incorporates these modifications to DMEM. In B27/Neurobasal,glial growth is reduced to less than 0.5% of the nearly pure neuronal population,as judged by immunocytochemistry for glial fibrillary acidic protein and neuron-specific enolase. Excellent long-term viability is achieved after 4 weeks in culture with greater than 90% viability for cells plated at 640/mm2 and greater than 50% viability for cells plated at 160/mm2. Since the medium also supports the growth of neurons from embryonic rat striatum,substantia nigra,septum,and cortex,and neonatal dentate gyrus and cerebellum (Brewer,in preparation),support for other neuron types is likely. B27/Neurobasal should be useful for in vitro studies of neuronal toxicology,pharmacology,electrophysiology,gene expression,development,and effects of growth factors and hormones.
View Publication
Characterization of ligand and substrate specificity for the calcium-dependent and calcium-independent protein kinase C isozymes.
Analysis of [3H]phorbol-12,13-dibutyrate (PDBu) binding was performed with protein kinase C (PKC)-alpha,-beta 1,-gamma,-delta,-epsilon,-eta,and -zeta produced in Sf9 insect cells using the baculovirus expression system. With the exception of PKC-zeta,all of the PKC isozymes bound [3H]PDBu with high affinity (Kd textless 1 nM),either in the presence or in the absence of calcium. Scatchard analysis using 100% phosphatidylserine vesicles revealed slightly lower affinity for the calcium-independent isozymes (PKC-delta,-epsilon,and -eta) than for the calcium-dependent isozymes (PKC-alpha,-beta,and -gamma). Competition for [3H]PDBu binding by different classes of PKC activators showed that 12-deoxyphorbol esters,mezerein,and octahydromezerein likewise possessed lower affinity for the calcium-independent isozymes. The mezerein analog thymeleatoxin was the most marked example,being almost 20-fold less potent for binding to PKC-epsilon and -eta than to PKC-beta 1. In contrast,the indole alkaloids (-)-indolactam V and (-)-octylindolactam V and the postulated endogenous activator 1,2-diacylglycerol bound with similar affinities to all of the PKC isoforms,suggesting that different residues/configurations in the binding sites of the different PKC isozymes might be involved in interaction with the pharmacophore of the activators. The seven PKC isozymes also showed clearly different substrate specificities with exogenous peptide and protein substrates. The heterogeneous behavior of the different members of the PKC family with ligands and substrates may contribute to the heterogeneity of PKC-mediated pathways at the cellular level.
View Publication
Eaves CJ et al. (DEC 1993)
Proceedings of the National Academy of Sciences of the United States of America 90 24 12015--9
Unresponsiveness of primitive chronic myeloid leukemia cells to macrophage inflammatory protein 1 alpha, an inhibitor of primitive normal hematopoietic cells.
Most primitive hematopoietic cells appear to be normally quiescent in vivo,whereas their leukemic counterparts in patients with chronic myeloid leukemia (CML) are maintained in a state of rapid turnover. This difference is also seen in the long-term culture system,where control of primitive hematopoietic progenitor proliferation is mediated by interactions of these cells with marrow-derived mesenchymal cells of the fibroblast lineage. We now show that exogenous addition of macrophage inflammatory protein 1 alpha (MIP-1 alpha) to normal long-term cultures can reversibly and specifically block the activation of primitive" (high proliferative potential)�
View Publication
Sogawa S et al. (NOV 1993)
Journal of medicinal chemistry 36 24 3904--9
3,4-Dihydroxychalcones as potent 5-lipoxygenase and cyclooxygenase inhibitors.
A novel series of 3,4-dihydroxychalcones was synthesized to evaluate their effects against 5-lipoxygenase and cyclooxygenase. Almost all compounds exhibited potent inhibitory effects on 5-lipoxygenase with antioxidative effects,and some also inhibited cyclooxygenase. The 2',5'-disubstituted 3,4-dihydroxychalcones with hydroxy or alkoxy groups exhibited optimal inhibition of cyclooxygenase. We found that 2',5'-dimethoxy-3,4-dihydroxychalcone (37; HX-0836) inhibited cyclooxygenase to the same degree as flufenamic acid and 5-lipoxygenase,more than quercetin. Finally,these active inhibitors of 5-lipoxygenase inhibited arachidonic acid-induced mouse ear edema more than phenidone.
View Publication
Gong JH et al. (APR 1994)
Leukemia 8 4 652--8
Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells.
The cell line described here was established for a 50-year-old male patient with rapidly progressive non-Hodgkin's lymphoma whose marrow was diffusely infiltrated with large granular lymphocytes (LGL). Immunophenotyping of marrow blasts and peripheral lymphocytes was positive for CD56,CD2 and CD7,and negative for CD3. Cytotoxicity of peripheral blood mononuclear cells at an effector: target (E:T) cell ratio of 50:1 was 79% against K562 cells and 48% against Daudi cells. To establish the line,cells from the peripheral blood were placed into enriched alpha medium containing 12.5% fetal calf serum,12.5% horse serum,10(-4) M beta-mercaptoethanol and 10(-6) M hydrocortisone. Growth of the line (termed NK-92) is dependent on the presence of recombinant IL-2 and a dose as low as 10 U/ml is sufficient to maintain proliferation. Conversely,cells die within 72 h when deprived of IL-2; IL-7 and IL-12 do not maintain long-term growth,although IL-7 induces short-term proliferation measured by 3H-thymidine incorporation. None of the other cytokines tested (IL-1 alpha,IL-6,TNF-alpha,IFN-alpha,IFN-gamma) supported growth of NK-92 cells which have the following characteristics: surface marker positive for CD2,CD7,CD11a,CD28,CD45,CD54,CD56bright; surface marker negative for CD1,CD3,CD4,CD5,CD8,CD10,CD14,CD16,CD19,CD20,CD23,CD34,HLA-DR. DNA analysis showed germline configuration for T-cell receptor beta and gamma genes. CD25 (p55 IL-2 receptor) is expressed on about 50% of all cells when tested at 100 U/ml of IL-2 and its expression correlates inversely with the IL-2 concentration. The p75 IL-2 receptor is expressed on about half of the cells at low density irrespective of the IL-2 concentration. NK-92 cells kill both K562 and Daudi cells very effectively in a 4 h51-chromium release assay (84 and 86% respectively,at an E:T cell ratio of 5:1). The cell line described here thus displays characteristics of activated NK-cells and could be a valuable tool to study their biology.
View Publication