Lavoie H et al. (JUL 2013)
Nature chemical biology 9 7 428--36
Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization.
RAF kinases have a prominent role in cancer. Their mode of activation is complex but critically requires dimerization of their kinase domains. Unexpectedly,several ATP-competitive RAF inhibitors were recently found to promote dimerization and transactivation of RAF kinases in a RAS-dependent manner and,as a result,undesirably stimulate RAS/ERK pathway-mediated cell growth. The mechanism by which these inhibitors induce RAF kinase domain dimerization remains unclear. Here we describe bioluminescence resonance energy transfer-based biosensors for the extended RAF family that enable the detection of RAF dimerization in living cells. Notably,we demonstrate the utility of these tools for profiling kinase inhibitors that selectively modulate RAF dimerization and for probing structural determinants of RAF dimerization in vivo. Our findings,which seem generalizable to other kinase families allosterically regulated by kinase domain dimerization,suggest a model whereby ATP-competitive inhibitors mediate RAF dimerization by stabilizing a rigid closed conformation of the kinase domain.
View Publication
文献
Wang T et al. (JUN 2013)
Nature cell biology 15 6 700--711
Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency
Mammalian somatic cells can be directly reprogrammed into induced pluripotent stem cells (iPSCs) by introducing defined sets of transcription factors. Somatic cell reprogramming involves epigenomic reconfiguration,conferring iPSCs with characteristics similar to embryonic stem cells (ESCs). Human ESCs (hESCs) contain 5-hydroxymethylcytosine (5hmC),which is generated through the oxidation of 5-methylcytosine by the TET enzyme family. Here we show that 5hmC levels increase significantly during reprogramming to human iPSCs mainly owing to TET1 activation,and this hydroxymethylation change is critical for optimal epigenetic reprogramming,but does not compromise primed pluripotency. Compared with hESCs,we find that iPSCs tend to form large-scale (100 kb–1.3 Mb) aberrant reprogramming hotspots in subtelomeric regions,most of which exhibit incomplete hydroxymethylation on CG sites. Strikingly,these 5hmC aberrant hotspots largely coincide (∼ 80%) with aberrant iPSC–ESC non-CG methylation regions. Our results suggest that TET1-mediated 5hmC modification could contribute to the epigenetic variation of iPSCs and iPSC–hESC differences.
View Publication
文献
Leydon C et al. (OCT 2013)
Tissue Engineering Part A 19 19-20 2233--2241
Human embryonic stem cell-derived epithelial cells in a novel in vitro model of vocal mucosa.
A satisfactory in vitro model of vocal fold mucosa does not exist,thus precluding a systematic,controlled study of vocal fold biology and biomechanics. We sought to create a valid,reproducible three-dimensional (3D) in vitro model of human origin of vocal fold mucosa of human origin. We hypothesized that coculture of human embryonic stem cell (hESC)-derived simple epithelial cells with primary vocal fold fibroblasts under appropriate conditions would elicit morphogenesis of progenitor cells into vocal fold epithelial-like cells and creation of a basement membrane. Using an in vitro prospective study design,hESCs were differentiated into cells that coexpressed the simple epithelial cell marker,keratin 18 (K18),and the transcription factor,p63. These simple epithelial cells were cocultured with primary vocal fold fibroblasts seeded in a collagen gel scaffold. The cells were cultured for 3 weeks in a keratinocyte medium at an air–liquid interface. After that time,the engineered mucosa demonstrated a stratified,squamous epithelium and a continuous basement membrane recapitulating the key morphologic and phenotypic characteristics of native vocal fold mucosa. hESC-derived epithelial cells exhibited positive staining for vocal fold stratified,squamous epithelial markers,keratin 13 (K13) and 14 (K14),as well as tight junctions,adherens junctions,gap junctions,and desmosomes. Despite the presence of components critical for epithelial structural integrity,the epithelium demonstrated greater permeability than native tissue indicating compromised functional integrity. While further work is warranted to improve functional barrier integrity,this study demonstrates that hESC-derived epithelial progenitor cells can be engineered to create a replicable 3D in vitro model of vocal fold mucosa featuring a multilayered,terminally differentiated epithelium.
View Publication
文献
Sundberg M et al. (AUG 2013)
Stem Cells 31 8 1548--1562
Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons
The main motor symptoms of Parkinson's disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson's disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for preclinical evaluation of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate iPSC (PiPSC)-derived DA neurons. According to our results,NCAM(+) /CD29(low) sorting enriched VM DA neurons from pluripotent stem cell-derived neural cell populations. NCAM(+) /CD29(low) DA neurons were positive for FOXA2/TH and EN1/TH and this cell population had increased expression levels of FOXA2,LMX1A,TH,GIRK2,PITX3,EN1,NURR1 mRNA compared to unsorted neural cell populations. PiPSC-derived NCAM(+) /CD29(low) DA neurons were able to restore motor function of 6-hydroxydopamine (6-OHDA) lesioned rats 16 weeks after transplantation. The transplanted sorted cells also integrated in the rodent brain tissue,with robust TH+/hNCAM+ neuritic innervation of the host striatum. One year after autologous transplantation,the primate iPSC-derived neural cells survived in the striatum of one primate without any immunosuppression. These neural cell grafts contained FOXA2/TH-positive neurons in the graft site. This is an important proof of concept for the feasibility and safety of iPSC-derived cell transplantation therapies in the future.
View Publication
文献
Dambrot C et al. (FEB 2013)
Differentiation 85 3 101--109
Polycistronic lentivirus induced pluripotent stem cells from skin biopsies after long term storage, blood outgrowth endothelial cells and cells from milk teeth
The generation of human induced pluripotent stem cells (hiPSCs) requires the collection of donor tissue,but clinical circumstances in which the interests of patients have highest priority may compromise the quality and availability of cells that are eventually used for reprogramming. Here we compared (i) skin biopsies stored in standard physiological salt solution for up to two weeks (ii) blood outgrowth endothelial cells (BOECs) isolated from fresh peripheral blood and (iii) children's milk teeth lost during normal replacement for their ability to form somatic cell cultures suitable for reprogramming to hiPSCs. We derived all hiPSC lines using the same reprogramming method (a conditional (FLPe) polycistronic lentivirus) and under similar conditions (same batch of virus,fetal calf serum and feeder cells). Skin fibroblasts could be reprogrammed robustly even after long-term biopsy storage. Generation of hiPSCs from juvenile dental pulp cells gave similar high efficiencies,but that of BOECs was lower. In terms of invasiveness of biopsy sampling,biopsy storage and reprogramming efficiencies skin fibroblasts appeared best for the generation of hiPSCs,but where non-invasive procedures are required (e.g. for children and minors) dental pulp cells from milk teeth represent a valuable alternative.
View Publication
文献
Gifford CA et al. (MAY 2013)
Cell 153 5 1149--1163
Transcriptional and epigenetic dynamics during specification of human embryonic stem cells
Differentiation of human embryonic stem cells (hESCs) provides a unique opportunity to study the regulatory mechanisms that facilitate cellular transitions in a human context. To that end,we performed comprehensive transcriptional and epigenetic profiling of populations derived through directed differentiation of hESCs representing each of the three embryonic germ layers. Integration of whole-genome bisulfite sequencing,chromatin immunoprecipitation sequencing,and RNA sequencing reveals unique events associated with specification toward each lineage. Lineage-specific dynamic alterations in DNA methylation and H3K4me1 are evident at putative distal regulatory elements that are frequently bound by pluripotency factors in the undifferentiated hESCs. In addition,we identified germ-layer-specific H3K27me3 enrichment at sites exhibiting high DNA methylation in the undifferentiated state. A better understanding of these initial specification events will facilitate identification of deficiencies in current approaches,leading to more faithful differentiation strategies as well as providing insights into the rewiring of human regulatory programs during cellular transitions. ?? 2013 Elsevier Inc.
View Publication
文献
Shahbazi M et al. (JUL 2013)
Journal of the Neurological Sciences 330 1–2 85--93
Inhibitory effects of neural stem cells derived from human embryonic stem cells on differentiation and function of monocyte-derived dendritic cells
Neural stem cells (NSCs) possess immunosuppressive characteristics,but effects of NSCs on human dendritic cells (DCs),the most important antigen presenting cells,are less well studied. We used an in vitro approach to evaluate the effects of human NSCs on differentiation of human blood CD14+ monocytes into DCs. NSCs derived from H1 human embryonic stem cells (hESC-NSCs) and human ReNcell NSC line,as well as human bone marrow derived mesenchymal stem cells (MSCs),were tested. We observed that in response to treatment with interleukin-4 and granulocyte macrophage colony-stimulating factor CD14+ monocytes co-cultured with NSCs were able to down-regulate CD14 and up-regulate the differentiation marker CD1a,whereas MSC co-culture strongly inhibited CD1a expression and supported prolonged expression of CD14. A similar difference between NSCs and MSCs was noted when lipopolysaccharides were included to induce maturation of monocyte-derived DCs. However,when effects on the function of derived DCs were investigated,NSCs suppressed the elevation of the DC maturation marker CD83,although not the up-regulation of costimulatory molecules CD80,CD86 and CD40,and impaired the functional capacity of the derived DCs to stimulate alloreactive T cells. We did not observe any obvious difference between hESC-NSCs and ReNcell NSCs in inhibiting DC maturation and function. Our data suggest that although human NSCs are less effective than human MSCs in suppressing monocyte differentiation into DCs,these stem cells can still affect the function of DCs,ultimately regulating specific immune responses.
View Publication
文献
Lebwohl D et al. ( 2013)
Annals of the New York Academy of Sciences 1291 14--32
Development of everolimus, a novel oral mTOR inhibitor, across a spectrum of diseases.
Everolimus is a potent,oral inhibitor of the mammalian target of rapamycin (mTOR) that has been investigated in multiple clinical development programs since 1996. A unique collaboration between academic and pharmaceutical experts fostered research that progressed rapidly,with simultaneous indication findings across numerous tumor types. Initially developed for the prophylaxis of organ transplant rejection,everolimus has demonstrated efficacy and safety for the treatment of patients with various types of cancer (renal cell carcinoma,neuroendocrine tumors of pancreatic origin,and breast cancer) and for adult and pediatric patients with tuberous sclerosis complex. The FDA approval of everolimus for these diseases has addressed several unmet medical needs and is widely accepted by the medical community where treatment options may be limited. An extensive clinical development program is ongoing to establish the role of everolimus as monotherapy,or in combination with other agents,in the treatment of a broad spectrum of malignancies.
View Publication
文献
Ricci A et al. (JUN 2013)
Cell cycle (Georgetown,Tex.) 12 11 1696--1703
TrkB is responsible for EMT transition in malignant pleural effusions derived cultures from adenocarcinoma of the lung.
Lung cancer is the leading cause of cancer-related mortality worldwide. Recent evidence indicates that tumors contain a subpopulation of cancer stem cells (CSCs) that are responsible for tumor maintenance and spread. CSCs have recently been linked to the occurrence of epithelial-to-mesenchymal transition (EMT). Neurotrophins (NTs) are growth factors that regulate the biology of embryonic stem cells and cancer cells,but still little is known about the role NTs in the progression of lung cancer. In this work,we investigated the role of the NTs and their receptors using as a study system primary cell cultures derived from malignant pleural effusions (MPEs) of patients with adenocarcinoma of the lung. We assessed the expression of NTs and their receptors in MPE-derived adherent cultures vs. spheroids enriched in CSC markers. We observed in spheroids a selectively enhanced expression of TrkB,both at the mRNA and protein levels. Both K252a,a known inhibitor of Trk activity,and a siRNA against TrkB strongly affected spheroid morphology,induced anoikis and decreased spheroid forming efficiency. Treatment with neurotrophins reversed the inhibitory effect of K252a. Importantly,TrkB inhibition caused loss of vimentin expression as well as that of a set of transcription factors known to be linked to EMT. These ex vivo results nicely correlated with an inverse relationship between TrkB and E-cadherin expression measured by immunohistochemistry in a panel of lung adenocarcinoma samples. We conclude that TrkB is involved in full acquisition of EMT in lung cancer,and that its inhibition results in a less aggressive phenotype.
View Publication
文献
Sharma A et al. (JUN 2013)
Journal of Biological Chemistry 288 25 18439--18447
The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells
Aging is known to be the single most important risk factor for multiple diseases. Sirtuin 6,or SIRT6,has recently been identified as a critical regulator of transcription,genome stability,telomere integrity,DNA repair,and metabolic homeostasis. A knockout mouse model of SIRT6 has displayed dramatic phenotypes of accelerated aging. In keeping with its role in aging,we demonstrated that human dermal fibroblasts (HDFs) from older human subjects were more resistant to reprogramming by classic Yamanaka factors than those from younger human subjects,but the addition of SIRT6 during reprogramming improved such efficiency in older HDFs substantially. Despite the importance of SIRT6,little is known about the molecular mechanism of its regulation. We show,for the first,time posttranscriptional regulation of SIRT6 by miR-766 and inverse correlation in the expression of this microRNA in HDFs from different age groups. Our results suggest that SIRT6 regulates miR-766 transcription via a feedback regulatory loop,which has implications for the modulation of SIRT6 expression in reprogramming of aging cells.
View Publication
文献
Mao P et al. (MAY 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 21 8644--8649
Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3.
Tumor heterogeneity of high-grade glioma (HGG) is recognized by four clinically relevant subtypes based on core gene signatures. However,molecular signaling in glioma stem cells (GSCs) in individual HGG subtypes is poorly characterized. Here we identified and characterized two mutually exclusive GSC subtypes with distinct dysregulated signaling pathways. Analysis of mRNA profiles distinguished proneural (PN) from mesenchymal (Mes) GSCs and revealed a pronounced correlation with the corresponding PN or Mes HGGs. Mes GSCs displayed more aggressive phenotypes in vitro and as intracranial xenografts in mice. Further,Mes GSCs were markedly resistant to radiation compared with PN GSCs. The glycolytic pathway,comprising aldehyde dehydrogenase (ALDH) family genes and in particular ALDH1A3,were enriched in Mes GSCs. Glycolytic activity and ALDH activity were significantly elevated in Mes GSCs but not in PN GSCs. Expression of ALDH1A3 was also increased in clinical HGG compared with low-grade glioma or normal brain tissue. Moreover,inhibition of ALDH1A3 attenuated the growth of Mes but not PN GSCs. Last,radiation treatment of PN GSCs up-regulated Mes-associated markers and down-regulated PN-associated markers,whereas inhibition of ALDH1A3 attenuated an irradiation-induced gain of Mes identity in PN GSCs. Taken together,our data suggest that two subtypes of GSCs,harboring distinct metabolic signaling pathways,represent intertumoral glioma heterogeneity and highlight previously unidentified roles of ALDH1A3-associated signaling that promotes aberrant proliferation of Mes HGGs and GSCs. Inhibition of ALDH1A3-mediated pathways therefore might provide a promising therapeutic approach for a subset of HGGs with the Mes signature.
View Publication
文献
Sakaki-Yumoto M et al. (JUN 2013)
Journal of Biological Chemistry 288 25 18546--18560
Smad2 Is essential for maintenance of the human and mouse primed pluripotent stem cell state
Human embryonic stem cells and mouse epiblast stem cells represent a primed pluripotent stem cell state that requires TGF-β/activin signaling. TGF-β and/or activin are commonly thought to regulate transcription through both Smad2 and Smad3. However,the different contributions of these two Smads to primed pluripotency and the downstream events that they may regulate remain poorly understood. We addressed the individual roles of Smad2 and Smad3 in the maintenance of primed pluripotency. We found that Smad2,but not Smad3,is required to maintain the undifferentiated pluripotent state. We defined a Smad2 regulatory circuit in human embryonic stem cells and mouse epiblast stem cells,in which Smad2 acts through binding to regulatory promoter sequences to activate Nanog expression while in parallel repressing autocrine bone morphogenetic protein signaling. Increased autocrine bone morphogenetic protein signaling caused by Smad2 down-regulation leads to cell differentiation toward the trophectoderm,mesoderm,and germ cell lineages. Additionally,induction of Cdx2 expression,as a result of decreased Smad2 expression,leads to repression of Oct4 expression,which,together with the decreased Nanog expression,accelerates the loss of pluripotency. These findings reveal that Smad2 is a unique integrator of transcription and signaling events and is essential for the maintenance of the mouse and human primed pluripotent stem cell state.
View Publication